CTNT 2024

Connecticut Summer School in Number Theory

Class Field Theory

Christelle Vincent
(University of Vermont)

First preliminary: \hat{z} Prüfer Ring Technically: projective limit

$$
\lim _{\underset{n}{ }} x \ln \not z=\hat{z}
$$

We need: If $m \mid n$, then there is

$$
\begin{array}{ccc}
\varphi_{n, m}: \mathbb{Z} / n \mathbb{Z} & \rightarrow \mathbb{Z} / m \mathbb{Z} & \operatorname{Gal(L/Q)} \\
a \quad \mapsto a & \downarrow \\
\text { educe more" } & & \text { Gal(K/R) }
\end{array}
$$

"reduce more"

We need: If $m \mid n$, then there is
$\varphi_{n, m}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$
$a \mapsto a$
"reduce more"

$$
\begin{aligned}
& a \equiv b \bmod n \Leftrightarrow a=b+k n, k \in Z \\
& a \equiv b \bmod m \Leftarrow a=b+k l m
\end{aligned}
$$

$l \in \mathbb{Z}$

$$
\mathbb{Z} / 6 \mathbb{Z} \rightarrow \mathbb{Z} / 3 \mathbb{Z}
$$

$1 \mapsto 1$
$7 \mapsto 1$

We need: If $m \mid n$, then there is
$\varphi_{n, m}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}$
$a \mapsto a$
"Reduce more" $\quad \sigma_{K} \quad \sigma_{L}$
$a \in \hat{Z}$ is a sequence $\left(a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \ldots\right)$

$$
a_{n} \in \mathbb{Z} / n \mathbb{Z}
$$

Whenever $m / n, \varphi_{n, m}\left(a_{n}\right)=a_{m}$
$\underset{\mathbb{Z}}{\underset{\sim}{\mathbb{Z}}}$

$$
\begin{aligned}
& a=10 \in \mathbb{Z} \leadsto(0,1,2,0,4,3,2,1,0,10 \ldots) \\
& \left(a_{2}, a_{3}, a_{4} a_{5}, a_{6}, a_{7}, a_{8}, a_{9}, a_{10}, \ldots\right)
\end{aligned}
$$

Sun ti's Remainder Theorem

$$
\begin{array}{cc}
\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 3 \mathbb{Z} \cong \mathbb{Z} / 6 \mathbb{Z} \\
\left(a_{2}, a_{3}\right) & a_{6}
\end{array}
$$

$$
\hat{\mathbb{Z}}=\prod_{p} \mathbb{Z}_{p}
$$

Two facts

- \mathbb{Z} is cense in $\hat{\mathbb{Z}}$
- $n \hat{\mathbb{Z}} \quad n \in \mathbb{Z}$ are exactly the open subsets of $\hat{\mathbb{Z}}$

Preliminary 2: (Infinite) Galois theory
Definition: L / K is a field extension This extension is Galois if it is

- algebraic: every $\alpha \in L$ is the Root of a polynomial in $K[x]$.
$\Rightarrow \alpha$ is a root of an irreducible poly

$$
m_{\alpha, k}(x) \in K[x]
$$

- normal: if $f(x) \in K[x]$ is irreducible and it has aroot in L, then all its roots
- normal: if $f(x) \in K[x]$ is irreducible and it has a root in L, then all the roots of f are also in L.
- Separable: the minimal polynomial of every $\alpha \in L$ over $K \quad\left(m_{\alpha, k}\right)$ has all distinct roots.

In this case $\operatorname{Aut}(L / K)=\operatorname{Gal}(L / K)$ automorphisms of L that fix K $\sigma(\beta)=\beta \quad \forall \beta \in K$

When $[L: K] \geq p e$ then there is a bijection

$$
\begin{gathered}
\text { subfields } \begin{array}{c}
\text { closed } \\
\text { subgroups }
\end{array} \\
K \subseteq E \subseteq L \quad \operatorname{Gal}(L / K) \geq H \geq 1 \\
H=\operatorname{Gal}(L / E) \\
E=L^{H}=\{l \in L: \sigma(l)=l . \sigma \in H\}
\end{gathered}
$$

of interest to us:
Base field k $\alpha \in \bar{k}$ separable closure
then $\operatorname{Gal}(\bar{k} / k)=\lim _{k / k}^{\leftarrow} \operatorname{Gal}(k / k)$ finite Galois
$\alpha \in \bar{k}$ is algebraic over k with separable $m_{\alpha, k}$

$$
\operatorname{Gal}(\bar{k} / k)=\lim _{\substack{k / k \\ \text { finite Galois }}} \operatorname{Gal}(k / k)
$$

$\alpha \in \bar{k}$ is algebraic over $-k$ with separable $m_{\alpha, k}$

Example: $k=\mathbb{F}_{p} \quad p$ prime

$$
\begin{aligned}
& \operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{p}\right) \quad \varphi: x \mapsto x^{p} \\
& \mathbb{F}_{p} r \subseteq \mathbb{F}_{p} s \\
& \text { iff rls } \\
& \lim _{\substack{k / \mathbb{F}_{p} \\
\text { finite }}} \operatorname{Gal}\left(K / \mathbb{F}_{p}\right)=\underset{n}{\lim _{n}} \operatorname{Gal}\left(\mathbb{F}_{p} / \mathbb{F}_{p}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Gal}\left(\mathbb{F}_{p^{n}} / \mathbb{F}_{p}\right) \cong \mathbb{Z} / n z \\
& \varphi: x \mapsto x^{p} \mapsto 1
\end{aligned}
$$

$\varphi: x \mapsto x^{p}$
$\psi \nmid \varphi\rangle$
For each n, write $n=n^{\prime} p^{e} \operatorname{gcd}\left(p, n^{\prime}\right)=1$
define $x_{n} \equiv\left(n^{\prime}\right)^{-1} \bmod p^{e}$
define $a_{n}=n^{\prime} x_{n}$
$\psi \in \operatorname{Gal}\left(\overline{\mathbb{F}}_{p} / \mathbb{F}_{\rho}\right) \quad\left(\psi_{2}, \psi_{3}, \psi_{4}, \ldots\right)$

$$
\psi_{n}=\varphi^{a_{n}}
$$

