

Last time

$$Gal(\overline{HF}_{p}/HF_{p}) = \lim_{n} Gal(HFp^{n}/HF_{p}) \cong \widehat{\mathscr{X}}$$

 $\varphi: x \mapsto x^{p}$ 1
the Frobenius
(1) Every finite K/HFp (K=HFpn))
has a Frobenius!
 $if q = p^{n}$ $Gal(\overline{HF}_{p}/K) = Gal(\overline{K}/K)$

Every finite K/Fp (K=Hpn) has a Frobenius I if q=ph Gal(Fp/K)= Gal(R/K) $\varphi_{\kappa} \colon X \mapsto X^{q}$ IFp18 IFp12 ≥ £ Gal(R/K) Fp4 QK: XHX9 脹

Example

Gal $(K/F_{P}) = \langle \varphi|_{k} \rangle$ $\varphi: x \mapsto x^{P}$ $\sigma = \varphi|_{k}^{4} : x \mapsto x^{p^{4}}$ take $\tilde{\sigma}: x \mapsto x^{p^4} \in Gal(\tilde{H}_p/H_p)$ the fixed field of $\tilde{\sigma}$ is Ffp⁴ and $\tilde{\sigma} = \varphi_{Ffp^4}$

Fp

Class field theory for k = Rpbase field

- Facts about finite extensions K/Rp
 - K is also a complete field with a discrete valuation
 - O_{K} integral closure of \mathbb{Z}_{p} in K is a DVR: it has a unique prime ideal $\mathcal{Q} = (\pi_{K})$

• OK integral closure of Zp in K is a DVR: it has a unique prime ideal $\beta = (\pi_{\kappa})$ Fact $pO_{K} = p^{e_{K}}$ $[K:\mathbb{R}_{P}] = e_{K'}f_{K}$ $\left[\begin{array}{c} O_{\kappa} \\ F \end{array} \right] = f_{\kappa}$ finite field Zp/p)

If $\sigma \in Gal(K/QRP)$

then $\sigma(p) = p$ so every $\sigma \in Gal(K/p)$ descends to Or/p Gal(K/Qp) -> Gal(Fpfx/Fp) = Z/fzZ o mod p σ pOK=p unramified fr=[K:Qp] if $e_{k}=1$ $Gal(K/Q_p) \cong Gal(Fip_{f_p}) = \mathbb{Z}_{f_p}$ \leftarrow <1

Fact:
$$\mathbb{Q}_{p}$$
 has a maximal unramified
extension, denoted $\mathbb{Q}_{p} \subseteq \overline{\mathbb{Q}}_{p}$
and $Gal(\mathbb{Q}_{p}/\mathbb{Q}_{p}) \cong Gal(\mathbb{F}_{p}/\mathbb{F}_{p}) \cong \widehat{\mathbb{Z}}$
 $\Psi \xleftarrow{} x \mapsto x^{p} \xleftarrow{} 1$
the Fredbenius tells me $\sigma = \psi^{n}$ $n \in \mathbb{Z}$
filso
d: $Gal(\overline{\mathbb{Q}}_{p}/\mathbb{Q}_{p}) \longrightarrow Gal(\mathbb{F}_{p}/\mathbb{F}_{p}) \cong \widehat{\mathbb{Z}}$
 $\sigma \qquad [x \mapsto x^{p} \xleftarrow{} 1]$
 $\sigma \qquad [x \mapsto x^{p} \xleftarrow{} 1]$

I = kerd = Gal (Rp / Rp)

Let K/
$$R_{\rm F}$$
 finite extension
 $\widetilde{K} = K \widetilde{R}_{\rm F}$ maximal unramified extension
of K
d: Gal(\widetilde{K}/K) not surjective \widehat{Z}
II
Gal($\widetilde{R}_{\rm F}/K$) \leq Gal($\widetilde{R}_{\rm F}/\mathcal{R}_{\rm F}$)
 $x_{\rm F} \times r^{n}$
Gal($\widetilde{R}_{\rm F}/\mathcal{R}_{\rm F}$) $\xrightarrow{n} \widetilde{Z}_{\rm A}$
N
Gal($\widetilde{F}_{\rm F}/\mathcal{R}_{\rm F}$) $\xrightarrow{n} \widetilde{Z}_{\rm A}$

Let
$$f_{K} = [\widehat{Z}: d(Gal(\overline{K}/K))]$$

 $= [OK/\wp; F_{p}]$
 $d_{K} = \bot d: Gal(\overline{K}/K) \rightarrow \widehat{Z}$

We say $\sigma \in Gal(\overline{K}/K)$ is "a" Freebenius for K if $d_k(\sigma) = 1$

$$d_{K} = \bot d: Gal(\bar{K}/k) \rightarrow \mathcal{F}_{K}$$

 f_{K}

We say $\sigma \in Gal(\overline{K}/K)$ is "a" Freobenius for K if $d_k(\sigma) = 1$ notation Every JE Gal (K/(Rp) is a Fredbenius somewhere k k $d(\tilde{\sigma}) = n = f_{\Sigma}$ $\ell = 1 \int_{\sigma}^{\infty} Let \Sigma$ be the fixed field of $\tilde{\sigma}$ then $\tilde{\sigma} = \psi_{\mathcal{T}}$

