
BACKGROUND ON QUADRATIC RECIPROCITY (CTNT 2024)

KEITH CONRAD

1. Introduction

The question quadratic reciprocity addresses is this: when p is an odd prime and a ∈ Z,
is a mod p a perfect square? That is, does x2 ≡ a mod p have a solution? This is a yes/no
question. It is asking whether a square root of a mod p exists, not how to find it.

Table 1 below lists the squares mod 3, 5, 7, and 11. For example, the squares mod 5 are
0, 1, and 4 and the nonsquares mod 5 are 2 and 3.

p a mod 3 0 1 2 Squares mod p

3 a2 mod 3 0 1 1 0, 1

5 a mod 5 0 1 2 3 4

a2 mod 5 0 1 4 4 1 0, 1, 4

7 a mod 7 0 1 2 3 4 5 6

a2 mod 7 0 1 4 2 2 4 1 0, 1, 2, 4

11 a mod 11 0 1 2 3 4 5 6 7 8 9 10

a2 mod 5 0 1 4 9 5 3 3 5 9 4 1 0, 1, 3, 4, 5, 9
Table 1. Squares mod p when p = 3, 5, 7, and 11.

2. Counting squares modulo a prime and the Legendre symbol

The nonzero square values mod p in the central part of Table 1 are symmetric around
the middle, e.g., 1, 4, 2, 2, 4, 1 mod 7. That reflects the algebraic rule a2 ≡ (−a)2 mod p,
or equivalently a2 ≡ (p− a)2 mod p.

Lemma 2.1. For an odd prime p, a2 ≡ b2 mod p if and only if a ≡ ±b mod p and the
number of nonzero squares modulo p is (p− 1)/2.

Proof. Squaring on the group (Z/(p))× is a homomorphism of the group to itself with
kernel ±1: x2 ≡ 1 mod p is the same as x2 − 1 = 0 in the field Z/(p), which is the same as
(x + 1)(x− 1) = 0 in Z/(p). The only solutions are 1 and −1 in Z/(p), which are distinct
since p > 2. Since squaring on (Z/(p))× has kernel {±1}, a2 = b2 in (Z/(p))× if and only
if a = bc where c2 = 1 in Z/(p), and we showed c = ±1 in Z/(p), so c ≡ ±1 mod p.

Since (Z/(p))× has order p− 1 and squaring (Z/(p))× → (Z/(p))× has a kernel of order
2, its image has order (p− 1)/2. �

Example 2.2. The nonzero squares mod 11 are a2 where 1 ≤ a ≤ (11 − 1)/2 = 5, as we
saw earlier in Table 1.
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We can detect squares using a refinement of Fermat’s little theorem. For all a 6≡ 0 mod p,
a(p−1)/2 mod p is a square root of 1, since

(a(p−1)/2)2 = ap−1 ≡ 1 mod p.

Thus

(2.1) a(p−1)/2 ≡ ±1 mod p.

Euler found that the value of a(p−1)/2 mod p distinguishes squares from nonsquares, and his
result in the next theorem is called Euler’s criterion.

Theorem 2.3 (Euler). Let p be an odd prime. For a 6≡ 0 mod p,

a(p−1)/2 ≡

{
1 mod p if a ≡ � mod p,

−1 mod p if a 6≡ � mod p.

Proof. Suppose a ≡ b2 mod p for some b. Then b 6≡ 0 mod p, so

a(p−1)/2 ≡ bp−1 ≡ 1 mod p

by Fermat’s little theorem.
We now show the converse:

(2.2) a(p−1)/2 ≡ 1 mod p =⇒ a ≡ � mod p.

The congruence on the left says a is a root in Z/(p) of the polynomial x(p−1)/2 − 1. A
polynomial with coefficients in a field has no more roots in the field than its degree, so there
are at most (p−1)/2 roots of x(p−1)/2−1 in Z/(p). The nonzero squares in Z/(p) are roots,
and Lemma 2.1 tells us there are (p−1)/2 nonzero squares in Z/(p), so the nonzero squares

exhaust all the roots of x(p−1)/2 − 1 in Z/(p).

By (2.1) we know a(p−1)/2 ≡ ±1 mod p for all a 6≡ 0 mod p. Therefore by (2.2) we have

a(p−1)/2 ≡ −1 mod p for nonsquares a mod p. �

Example 2.4. Table 2 below illustrates the distinction between squares and nonsquares
in (Z/(11))× by raising everything to the power 11−1

2 = 5. The numbers a with 5th power
1 mod 11 are the nonzero squares mod 11 and the numbers with 5th power −1 mod 11 are
the nonsquares mod 11. Compare with the bottom of Table 1.

a 1 2 3 4 5 6 7 8 9 10

a5 mod 11 1 −1 1 1 1 −1 −1 −1 1 −1
Table 2.

Example 2.5. Let’s see if 30 ≡ � mod 79 (the modulus is prime). Using a computer,

30(79−1)/2 = 3039 ≡ 78 ≡ −1 mod 79, so 30 mod 79 is not a square. That is not a calculation
you would want to do directly by hand.

Euler’s criterion (Theorem 2.3) lets us describe odd primes p where −1 mod p is a square.

Corollary 2.6. For odd primes p, −1 ≡ � mod p if and only if p ≡ 1 mod 4.

Proof. By Euler’s criterion, −1 ≡ � mod p⇐⇒ (−1)(p−1)/2 ≡ 1 mod p. Since (−1)(p−1)/2 =

±1 and −1 6≡ 1 mod p, saying (−1)(p−1)/2 ≡ 1 mod p is the same as (−1)(p−1)/2 = 1 mod p,
which means (p− 1)/2 is even. That is the same as p = 1 + 4k for some k ∈ Z. �
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A result like Corollary 2.6 for numbers besides −1 is not easy to obtain: 3 ≡ � mod p⇐⇒
3(p−1)/2 ≡ 1 mod p, but there isn’t a simple formula for 3(p−1)/2.

Squares and nonsquares in (Z/(p))× are called quadratic residues and quadratic non-
residues. Gauss wrote a R p when a mod p is a quadratic residue and a N p otherwise,
e.g., 3 R 11 and 6 N 11. In 1798 Legendre introduced a notation that made the quadratic
residue and quadratic non-residue relations into numerical functions.

Definition 2.7. For a ∈ Z and an odd prime p, the Legendre symbol (ap ) is defined as

(
a

p

)
=


1, if a ≡ � mod p and a 6≡ 0 mod p,

−1, if a 6≡ � mod p,

0, if a ≡ 0 mod p.

The reason behind using these values, at least when a 6≡ 0 mod p, is that they appear on
the right side of Euler’s criterion, so we can say

(2.3) a(p−1)/2 ≡
(
a

p

)
mod p.

We set (ap ) = 0 when a ≡ 0 mod p so that this congruence is also valid in that case while

keeping all the values of the Legendre symbol multiplicatively closed. It also makes the last
part of Theorem 2.10 below true for all a.

Example 2.8. By Table 1, (23) = −1, (25) = −1, (27) = 1, and ( 3
11) = 1.

Example 2.9. The only nonzero squares mod 5 are 1 and 4. Since −7 ≡ 3 mod 5, we have
(−75 ) = (35) = −1. The Legendre symbol (105 ) is 0.

The following theorem summarizes basic algebraic properties of the Legendre symbol.

Theorem 2.10. Let p be an odd prime. For all a and b in Z,

(1) a(p−1)/2 ≡ (ap ) mod p,

(2) if a ≡ b mod p, then (ap ) = ( bp),

(3) (abp ) = (ap )( bp),

(4) the number of solutions to x2 ≡ a mod p is 1 + (ap ).

Proof. The first property is just (2.3).
The second property reflects the fact that (ap ) is determined by the behavior of a mod p.

For the third property, note (abp ) and (ap )( bp) are 0, 1, or −1, and these three values are

distinct modulo p since p > 2. So we can check (abp ) = (ap )( bp) in Z by checking instead that

(abp ) ≡ (ap )( bp) mod p. Working modulo p, the two sides are congruent to powers:(
ab

p

)
≡ (ab)(p−1)/2 mod p,(

a

p

)(
b

p

)
≡ a(p−1)/2b(p−1)/2 mod p.

The right sides of both congruences are equal, so the left sides are congruent mod p and
thus are equal in Z since they are 0, 1, or −1.

To show the fourth property, that x2 ≡ a mod p has 1 + (ap ) solutions mod p, take cases.

• If a mod p is a nonsquare then x2 ≡ a mod p has 0 solutions and 1+(ap ) = 1−1 = 0.
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• If a mod p is a nonzero square then x2 ≡ a mod p has 2 solutions by Theorem 2.1
and 1 + (ap ) = 1 + 1 = 2.

• If a ≡ 0 mod p then x2 ≡ a mod p has 1 solution and 1+(ap ) = 1+(0p) = 1+0 = 1. �

The third property of Theorem 2.10, called the multiplicativity of the Legendre symbol,
says the following three facts about nonzero numbers modulo p when p is an odd prime:

(i) the product of two squares is a square (in terms of the Legendre symbol, 1 = 1 · 1),
(ii) the product of a square and a nonsquare is a nonsquare (−1 = (1)(−1) = (−1)(1)),

(iii) the product of two nonsquares is a square (1 = (−1)(−1)).

The first two facts are true in all fields, by simple algebra. But the last fact, that
nonsquares in Z/(p) have a product that is a square, is somewhat special Z/(p): it is not
true in most fields.

Example 2.11. In Z/(11), 2 and 7 are not squares. Their product is 3, which is a square
(3 = 52 in Z/(11)).

Example 2.12. When a modulus m is composite, it is usually false that a product of two
nonsquares mod m is a square mod m. For instance, 2 and 7 are not squares mod 15, and
their product 14 is also not a square mod 15.

The real numbers share with Z/(p) the property that the product of nonsquares is a
square since two negative numbers have a product that is positive. This has a common
explanation: when K = Z/(p) or R, [K× : (K×)2] = 2. Whenever K is a field in which
[K× : (K×)2] = 2, K×/(K×)2 has order 2, which implies two nonsquares in K× are equal in
K×/(K×)2 and thus their product is in (K×)2. In Example 2.12, the squares in (Z/(15))×

have index 4, not 2. More generally, when m > 1 is odd, the squares in (Z/(m))× have
index 2 if and only if m is a prime power.

Remark 2.13. When p is an arbitrary prime, even p = 2, at least one of 2, 3, or 6 is a
square mod p. An interesting use of this is that it implies x4−10x2+1 mod p is reducible for
all p even though x4−10x2+1 is is irreducible over Q: see https://kconrad.math.uconn.
edu/blurbs/ringtheory/reducibleallp.pdf.

For any nonzero integer a, factor it as

a = εp1p2 · · · pr,

where ε = ±1 and the pi’s are prime numbers. Some pi’s may be equal. By multiplicativity,(
a

p

)
=

(
ε

p

)(
p1
p

)
· · ·
(
pr
p

)
.

Thus computing (ap ) is reduced to the case where a is −1 or a prime number. Because of

the peculiar nature of the prime 2 in the context of squares, it is useful to consider three
cases rather than two : a = −1, a = 2, and a = q is an odd prime. The evaluation of (ap )

in these cases is given by the quadratic reciprocity law, which we turn to next.

3. The Quadratic Reciprocity Law

The following formulas for (ap ) when a is an odd prime, −1, or 2 are collectively called

the quadratic reciprocity law.

https://kconrad.math.uconn.edu/blurbs/ringtheory/reducibleallp.pdf
https://kconrad.math.uconn.edu/blurbs/ringtheory/reducibleallp.pdf
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Theorem 3.1 (Quadratic Reciprocity). Let p and q be distinct odd primes. Then

(3.1)

(
q

p

)
=


(
p

q

)
, if p or q ≡ 1 mod 4,

−
(
p

q

)
, if p and q ≡ 3 mod 4

and

(3.2)

(
−1

p

)
=

{
1, if p ≡ 1 mod 4,

−1, if p ≡ 3 mod 4,

(
2

p

)
=

{
1, if p ≡ 1, 7 mod 8,

−1, if p ≡ 3, 5 mod 8,

Equation (3.1) is called the main law of quadratic reciprocity and the equations in (3.2)
are called the supplementary laws. In words, the main law says

• if p or q is 1 mod 4 then q ≡ � mod p if and only if p ≡ � mod q,
• if p and q are 3 mod 4 then q ≡ � mod p if and only if p 6≡ � mod q.

The supplementary laws say −1 ≡ � mod p if and only if p ≡ 1 mod 4 (which is Corollary
2.6) and 2 ≡ � mod p if and only if p ≡ ±1 mod 8.

The equations in (3.1) and (3.2) are expressible without using cases as

(3.3)

(
q

p

)
= (−1)

p−1
2
· q−1

2

(
p

q

)
,

(
−1

p

)
= (−1)

p−1
2 ,

(
2

p

)
= (−1)

p2−1
8 .

This is because when p is an odd prime, or just an odd number, (p−1)/2 is even exactly when
p ≡ 1 mod 4, p2 ≡ 1 mod 16 when p ≡ 1, 7 mod 8, and p2 ≡ 9 mod 16 when p ≡ 3, 5 mod 8.

Figure 1 is how the main law appears in Legendre’s Essai sur la Théorie des Nombres [6,
p. 214], where m and n are distinct odd primes. At the top of this page Legendre introduced
the term “loi de réciprocité”.

Figure 1. Quadratic reciprocity as written by Legendre in 1798.

Example 3.2. Let’s use quadratic reciprocity to calculate (3079):

(3.4)

(
30

79

)
=

(
2

79

)(
3

79

)(
5

79

)
,

so computing (3079) is reduced to computing ( q79) for q = 2, 3, and 5.
Since 79 ≡ 7 mod 8, the supplementary law tells us(

2

79

)
= 1.
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Using the main law (
3

79

)
= −

(
79

3

)
since 3, 79 ≡ 3 mod 4

= −
(

1

3

)
since 79 ≡ 1 mod 3

= −1

and (
5

79

)
=

(
79

5

)
since 5 ≡ 1 mod 4

=

(
4

5

)
since 79 ≡ 4 mod 5

= 1.

Thus (3079) = 1 · (−1) · 1 = −1, so 30 is not a square modulo 79. We had seen this earlier in

Example 2.5 by computing 30(79−1)/2 mod 79.

Example 3.3. Is 60 mod 103 a square? Note 103 is prime. We want to compute ( 60
103).

Since 60 = 4 · 3 · 5, (
60

103

)
=

(
4

103

)(
3

103

)(
5

103

)
=

(
3

103

)(
5

103

)
,

so we are reduced to computing ( 3
103) and ( 5

103). By the main law,(
3

103

)
= −

(
103

3

)
since 3, 103 ≡ 3 mod 4

= −
(

1

3

)
since 103 ≡ 1 mod 3

= −1

and (
5

103

)
=

(
103

5

)
since 5 ≡ 1 mod 4

=

(
3

5

)
since 103 ≡ 3 mod 5

= −1.

Thus ( 60
103) = (−1)(−1) = 1, so 60 mod 103 is a square. This does not say what 60 mod 103

is a square of. By a brute force search, 60 ≡ 362 mod 103.

To carry out Legendre symbol calculations by hand, it is worth memorizing the nonzero
squares modulo small primes so that you recognize them by sight: the only (nonzero) square
mod 3 is 1, mod 5 there is only 1 and 4, and mod 7 there is only 1, 2, and 4. Since there
are (p − 1)/2 nonzero squares mod p, once you have found (p − 1)/2 different squares you
have found them all and you can stop. Also remember that for all odd a, a2 ≡ 1 mod 8.

Remark 3.4. Is −1 ≡ � mod 161? Since 161 ≡ 1 mod 4, by the supplementary law for
(−1p ) we have ( −1161) = 1, so −1 ≡ � mod 161. However, this reasoning is wrong because 161
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is not prime: 161 = 7 · 23. In fact, −1 mod 161 is not a square: if −1 ≡ x2 mod 161 then
−1 ≡ x2 mod 7, but −1 mod 7 is not a square: by the supplementary law (−17 ) = −1 since
7 ≡ 3 mod 4, or by Table 1 the nonzero squares mod 7 are 1, 2, and 4.

Another error to avoid is thinking (ap )2 = 1 since (ap ) = ±1: check first that (ap ) 6= 0.

Quadratic reciprocity was first conjectured by Euler in 1744. He proved the supplemen-
tary laws but not the main law. Legendre in 1785 proved some cases of the main law but
his reasoning had gaps in other cases: see Appendix A. The first complete proof was given
by Gauss in 1796 when he was 18. He called it the aureum theorema (“golden theorem”)
and eventually found eight proofs. Quadratic reciprocity has more proofs than any other
theorem in mathematics except perhaps the Pythagorean theorem. For a list of over 300
proofs, see https://www.mathi.uni-heidelberg.de/∼flemmermeyer/qrg proofs.html.

In the remaining three sections we will give three separate proofs of quadratic reciprocity.
If one proof is too technical for you, try another. The second proof uses the least background.
There is not any intuition that explains why the proofs should work. In each case quadratic
reciprocity falls out as something like a little miracle.

4. Proof by Gauss sums

One of the most commonly presented proofs of quadratic reciprocity (at least the main
law) uses properties of the sum

Gp =

p−1∑
a=1

(
a

p

)
ζap =

∑
a6≡0 mod p

(
a

p

)
ζap ,

where ζp is a nontrivial pth root of unity. This sum is called a Gauss sum1 and it first
appeared in Gauss’ 6th proof of quadratic reciprocity. The value of Gp may depend on the

choice of ζp. Often the standard nontrivial pth root of unity e2πi/p is used, but any choice
will suffice here.

Example 4.1. Taking p = 3,

G3 =

2∑
a=1

(a
3

)
ζa3 = ζ3 − ζ23 = ζ3 − ζ−13 .

If ζ3 = e2πi/3, then G3 = 2i sin(2π/3) = 2i(
√

3/2) = i
√

3. If ζ3 = e−2πi/3, then G3 = −i
√

3.

Example 4.2. Taking p = 5,

G5 =

4∑
a=1

(a
5

)
ζa5 = ζ5 − ζ25 − ζ35 + ζ45 = (ζ5 + ζ−15 )− (ζ25 + ζ−25 ).

If ζ5 = e2πi/5, then G5 = 2 cos(2π/5) − 2 cos(4π/5) ≈ 2.236067, which looks like
√

5. If

ζ5 = e4π/5, then G5 ≈ −2.236067 is apparently −
√

5.

Lemma 4.3. When p is an odd prime, G2
p = (−1)(p−1)/2p.

1The term “Gauss sum” has a much wider meaning as certain sums on finite rings, such as Z/(m) or
finite fields: see https://kconrad.math.uconn.edu/blurbs/gradnumthy/Gauss-Jacobi-sums.pdf.

https://www.mathi.uni-heidelberg.de/~flemmermeyer/qrg_proofs.html
https://kconrad.math.uconn.edu/blurbs/gradnumthy/Gauss-Jacobi-sums.pdf
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Proof. Write G2
p as a product of sums over two independent indices running over (Z/(p))×:

G2
p =

∑
a6=0

(
a

p

)
ζap ·

∑
b6=0

(
b

p

)
ζbp =

∑
a,b6=0

(
ab

p

)
ζa+bp =

∑
a6=0

∑
b6=0

(
ab

p

)
ζa+bp .

In the inner sum (for each nonzero a), make the change of variables b 7→ ab, so

G2
p =

∑
a6=0

∑
b 6=0

(
a2b

p

)
ζa(1+b)p

=
∑
b6=0

∑
a6=0

(
b

p

)
ζa(1+b)p

=
∑
b6=0

(
b

p

)∑
a6=0

(ζ1+bp )a

=
∑
b6=0

(
b

p

)(∑
a

(ζ1+bp )a − 1

)
The number ζ1+bp is a nontrivial pth root of unity unless b ≡ −1 mod p, and when it is
nontrivial the sum of its ath powers over all a is 0 (sum a finite geometric series), so
separate the term in the outer sum where b = −1 from the other terms:

G2
p =

∑
b6=0,−1

(
b

p

)
(−1) +

(
−1

p

)
(p− 1) =

∑
b 6=0

(
b

p

)
+

(
−1

p

)
p.

The sum over nonzero b has as many Legendre symbol equal to 1 as to −1 since there are
as many squares as nonsquares in (Z/(p))×. Thus that sum is 0, so G2

p = (−1p )p. �

Theorem 4.4. When p and q are distinct odd primes, ( qp) = (−1)(p−1)/2···(q−1)/2(pq ).

Proof. The Gauss sum Gp lies in the ring Z[ζp]. Although q need not be prime in Z[ζp],
the quotient ring Z[ζp]/(q) has prime characteristic q, so the qth power map on Z[ζp]/(q) is
additive. Since q is odd, (ap )q = (ap ) no matter what value (ap ) is, so

Gqp ≡
∑
a6=0

(
a

p

)q
ζqap ≡

∑
a6=0

(
a

p

)
ζqap mod qZ[ζp].

Let q′ mod p be the inverse of q mod p, so ( q
′

p ) = ( qp). Make the change of variables a 7→ q′a

in the sum on the right:

(4.1) Gqp ≡
∑
a6=0

(
q′a

p

)
ζap ≡

(
q′

p

)∑
a6=0

(
a

p

)
ζap =

(
q

p

)
Gp mod qZ[ζp].

Since p is a unit in Z/(q), p is also a unit in Z[ζp](q). Then the relation G2
p = ±p in Lemma

4.3 implies Gp is a unit in Z[ζp](q), so we can divide through by Gp in (4.1):

(4.2) Gq−1p ≡
(
q

p

)
mod qZ[ζp].

Since q − 1 is even, using Lemma 4.3 we get

Gq−1p = (G2
p)

(q−1)/2 = ((−1)(p−1)/2p)(q−1)/2 = (−1)(p−1)/2·(q−1)/2p(q−1)/2.
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Using this in (4.2),

(−1)(p−1)/2·(q−1)/2p(q−1)/2 ≡
(
q

p

)
mod qZ[ζp].

Since p(q−1)/2 ≡ (pq ) mod qZ,

(4.3) (−1)(p−1)/2·(q−1)/2
(
p

q

)
≡
(
q

p

)
mod qZ[ζp].

The two sides of this congruences are ±1, so as long as 1 6≡ −1 mod qZ[ζp] the congruence
in (4.3) implies equality of the two sides in Z, which is the main law of quadratic reciprocity.

If 1 ≡ −1 mod qZ[ζp] then subtracting and dividing by q implies 2/q ∈ Z[ζp]. Check that
Q ∩ Z[ζp] = Z (this may a subtle point if you have not worked with algebraic integers), so
2/q ∈ Z, which is a contradiction. �

Theorem 4.5. When p is an odd prime, (2p) = 1 when p ≡ 1, 7 mod 8 and (2p) = −1 when

p ≡ 3, 5 mod 8.

Proof. We will use a modified Gauss sum

G = ζ8 − ζ38 − ζ58 + ζ78 = ζ8 + ζ−18 − (ζ38 + ζ−38 ).

The possible values of ζ8 in C are e2πia/8 where a ∈ {1, 3, 5, 7}. When ζ8 = e2πi/7,

ζ8 + ζ−18 = 2 cos(2π/8) = 2 cos(π/4) = 2/
√

2 =
√

2

and
ζ38 + ζ−38 = 2 cos(6π/8) = 2 cos(3π/4) = −2/

√
2 = −

√
2,

so G =
√

2− (−
√

2) = 2
√

2. In a similar way, G is 2
√

2 or −2
√

2 when ζ8 = e2πia/8 and a
is 3, 5, or 7. No matter which ζ8 you pick, G2 = 8.

The number G lies in the ring Z[ζ8]. We will calculate with G in the quotient ring
Z[ζ8]/(p), which has characteristic p even though p may not be prime in Z[ζ8]. Since the
pth power map is additive on rings with characteristic p and (−1)p = −1,

Gp ≡ ζp8 − ζ
3p
8 − ζ

5p
8 + ζ7p8 mod pZ[ζp].

If p ≡ ±1 mod 8, then the right side is G. If p ≡ ±3 mod 8, then the right side is −G. Thus

(4.4) Gp = εpG mod pZ[ζ8]

where εp is 1 when p ≡ ±1 mod 8 and εp is −1 when p ≡ ±3 mod 8. Since 2 is a unit in
Z/(p), 2 is also a unit in Z[ζ8]/(p). Then by G2 = 8 we know G is a unit in Z[ζ8]/(p), so
we can divide through (4.4) by G to get

(4.5) Gp−1 ≡ εp mod pZ[ζ8].

Since p − 1 is even, Gp−1 = (G2)(p−1)/2 = 8(p−1)/2 = (2(p−1)/2)3. We have 2(p−1)/2 ≡
(2p) mod pZ, so 8(p−1)/2 ≡ (2p)3 = (2p) mod pZ. Using this in (4.5),(

2

p

)
≡ εp mod pZ[ζ8].

As in the previous proof, since the two sides of this congruences are ±1, we get their equality
in Z as long as 1 6≡ −1 mod pZ[ζ8], and that would be the supplementary law for (2p).

If 1 ≡ −1 mod pZ[ζ8] then subtracting and dividing by p implies 2/p ∈ Z[ζ8]. Check that
Q ∩ Z[ζ8] = Z, so 2/p ∈ Z, and that’s a contradiction. �
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5. Proof by counting solutions to congruences mod p

In this section we will prove the supplementary law for (2p) and the main law by a method

due to V. A. Lebesgue2 [5, pp. 132–134] in 1838. It is based on counting the number of
points on the “mod p circle”

x2 + y2 ≡ a mod p.

Lemma 5.1. For a ∈ Z/(p),

|{(x, y) : x, y ∈ Z/(p), x2 + y2 = a}| =

{
p− (−1p ), if a 6= 0,

p+ (−1p )(p− 1), if a = 0.

In particular, the number of ways of writing a as a sum of two squares in Z/(p) is the same
for all nonzero a.

Proof. Let Na be the number of solutions. First we will compute N0 and then we will look
at Na for a 6≡ 0 mod p.

Since N0 = |{(x, y) : x, y ∈ Z/(p), x2 = −y2}|, if there is a solution with y 6≡ 0 mod p
then dividing by y2 shows −1 ≡ � mod p. So contrapositively, if −1 6≡ � mod p then
we must have y ≡ 0 mod p, so x ≡ 0 mod p, which means N0 = 1. If −1 ≡ � mod p,
say −1 ≡ t2 mod p, then x2 ≡ −y2 mod p if and only if x ≡ ±ty mod p, so for each
nonzero y (p − 1 choices for that) there are 2 choices of x and if y = 0 then x = 0. Thus
N0 = 2(p− 1) + 1 = 2p− 1, so

N0 =

{
1, if − 1 6≡ � mod p,

2p− 1, if − 1 ≡ � mod p,

which is described in a uniform way by the single formula p+ (−1p )(p− 1).

Now we compute Na for a 6≡ 0 mod p. We will show Na is the same for all nonzero
a mod p and then compute this common value.

Write

Na =
∑
b+c=a

|{x : x2 ≡ b mod p}| |{y : y2 ≡ c mod p}|,

where the sum runs over all b and c in Z/(p) having sum a modulo p. By Theorem 2.10(4),

Na =
∑
b+c=a

(
1 +

(
b

p

))(
1 +

(
c

p

))
=
∑
b+c=a

(
1 +

(
b

p

)
+

(
c

p

)
+

(
bc

p

))
=
∑
b

(
1 +

(
b

p

)
+

(
a− b
p

)
+

(
b(a− b)

p

))
= p+

∑
b

(
b

p

)
+
∑
b

(
a− b
p

)
+
∑
b

(
b(a− b)

p

)
.

2This is not the Henri Lebesgue from measure theory.
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There are as many squares as nonsquares among the nonzero values mod p, so the second
and third sums above each contain as many 1’s as −1’s, so both sums are 0. Thus

Na = p+
∑
b

(
b(a− b)

p

)
.

The formula looks like it depends on a. We will make the dependence disappear by a clever
change of variables: in the sum over all b mod p, replace b with ab. (This is an invertible
change of variables since a 6≡ 0 mod p.) Then

Na = p+
∑
b

(
ab(a− ab)

p

)
= p+

∑
b

(
a2b(1− b)

p

)
= p+

∑
b

(
b(1− b)

p

)
.

The last formula does not involve a, so all Na for a 6≡ 0 mod p are the same. What is this
common value?

Since
∑

a mod pNa = p2 (because every pair (x, y) in (Z/(p))2 is counted by one Na),

write Na for a 6≡ 0 mod p as N1 to get N0 + (p− 1)N1 = p2, so

N1 =
p2 −N0

p− 1
=
p2 − p− (−1p )(p− 1)

p− 1
= p−

(
−1

p

)
. �

Theorem 5.2. For odd primes p,(
2

p

)
=

{
1, if p ≡ 1, 7 mod 8,

−1, if p ≡ 3, 5 mod 8.

Proof. We will count the number of points on the “mod p unit circle”

x2 + y2 ≡ 1 mod p

in two ways. By Lemma 5.1, there are p− (−1p ) points. We will now compute the number,

as an integer modulo 8, in a different way.
The solutions to x2 +y2 ≡ 1 mod p come in collections of size 8: given any solution (x, y)

we have 8 solutions by changing signs independently:

(x, y), (−x, y), (x,−y), (−x,−y), (y, x), (−y, x), (y,−x), (−y,−x).

Actually, these 8 solutions mod p are different provided x 6≡ 0 mod p, y 6≡ 0 mod p, and
x 6≡ ±y mod p. So the total number of solutions is congruent modulo 8 to the number of
solutions with x ≡ 0 mod p or y ≡ 0 mod p or x ≡ ±y mod p. The condition x ≡ 0 mod p
means (x, y) = (0,±1), y ≡ 0 mod p means (x, y) = (±1, 0), and x ≡ ±y mod p means
(x, y) = (c,±c) where 2c2 ≡ 1 mod p. There are such c precisely when 2 ≡ � mod p, in
which case c has 2 values. So the number of exceptions we have found is 2 + 2 + 4 = 8 if
2 ≡ � mod p and 2 + 2 + 0 = 4 if 2 6≡ � mod p. Thus

p−
(
−1

p

)
≡

{
0 mod 8, if 2 ≡ � mod p,

4 mod 8, if 2 6≡ � mod p.

We can write this in a uniform way as

p−
(
−1

p

)
≡ 2

(
1−

(
2

p

))
mod 8.
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Dividing this congruence by 2 (which reduces the modulus to 4) and rearranging terms,(
2

p

)
≡ 1−

p− (−1p )

2
mod 4.

Now take cases on p mod 8. If p ≡ 1 mod 8, p − (−1p ) = p − 1 ≡ 0 mod 8, so 1 −
p−(−1

p
)

2 ≡

1 mod 4. If p ≡ 3 mod 8, p − (−1p ) = p + 1 ≡ 4 mod 8, so 1 −
p−(−1

p
)

2 ≡ −1 mod 4. If

p ≡ 5 mod 8, p−(−1p ) = p−1 ≡ 4 mod 8, so 1−
p−(−1

p
)

2 ≡ −1 mod 4. Lastly, if p ≡ 7 mod 8,

p− (−1p ) = p+ 1 ≡ 0 mod 8, so 1−
p−(−1

p
)

2 ≡ 1 mod 4. We have computed (2p) mod 4 in all

cases, which tells us (2p) as an integer since 1 6≡ −1 mod 4. �

To prove the main law by this method we will count the number of points on the “mod
p unit hypersphere”

(5.1) x21 + x22 + · · ·+ x2n ≡ 1 mod p

in (Z/(p))n. (Actually, only odd n and n = 2 will be important for us; we used n = 2
already to compute (2p).) It will be convenient to work with equations in Z/(p) rather than

congruences in Z, principally because we will be introducing changes of variables that are
simpler to describe within Z/(p). Thus we will view (5.1) as the equation

x21 + x22 + · · ·+ x2n = 1

directly in Z/(p).

Definition 5.3. For an odd prime p and n ≥ 1, let

Nn,p = |{(x1, . . . , xn) ∈ (Z/(p))n : x21 + · · ·+ x2n = 1}|.

Since x2 = 1 has two solutions in Z/(p), N1,p = 2. By Lemma 5.1, N2,p = p− (−1p ). For

n ≥ 3, we will find a recursion connecting Nn,p to Nn−2,p.
When trying to solve the equation

x21 + x22 + · · ·+ x2n−1 + x2n = 1

with xi ∈ Z/(p), let x1, . . . , xn−2 be chosen arbitrarily. There are pn−2 such choices that
can be made. To solve for xn−1 and xn amounts to writing 1 − x21 − · · · − x2n−2 as a sum
of two squares, and Lemma 5.1 tells us that the number of ways to write an element of
Z/(p) as a sum of two squares depends only on whether or not the element is 0. Taking
into account the formula in Lemma 5.1,

Nn,p =
∑

x1,...,xn−2∈Z/(p)

|{(x, y) ∈ (Z/(p))2 : x2 + y2 = 1− x21 − · · · − x2n−2}|

=
∑

x21+···+x2n−2 6=1

(
p−

(
−1

p

))
+

∑
x21+···+x2n−2=1

(
p+

(
−1

p

)
(p− 1)

)
.
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The term in both sums contains p − (−1p ) and the term in the second sum contains an

additional (−1p )p. Thus for all n ≥ 3,

Nn,p =
∑

x1,...,xn−2

(
p−

(
−1

p

))
+

∑
x21+···+x2n−2=1

(
−1

p

)
p

= pn−2
(
p−

(
−1

p

))
+

(
−1

p

)
pNn−2,p

= pn−1 +

(
−1

p

)(
pNn−2,p−pn−2

)
.(5.2)

Equation (5.2) is the key formula. It provides a recursion for the sequence Nn,p linking any
members that are two terms apart. We will focus on Nn,p for odd n.

Since N1,p = 2, by (5.2) we get

N3,p = p2 +

(
−1

p

)
(p · 2− p)

= p2 +

(
−1

p

)
p

and

N5,p = p4 +

(
−1

p

)(
pN3,p−p3

)
= p4 +

(
−1

p

)(
p3 +

(
−1

p

)
p2 − p3

)
= p4 + p2.

Doing this one more time,

N7,p = p6 +

(
−1

p

)
(pN5,p−p5)

= p6 +

(
−1

p

)
(p5 + p3 − p5)

= p6 +

(
−1

p

)
p3.

We collect all these formulas for Nn,p in Table 3.

n Nn,p

1 2
3 p2 + (−1p )p

5 p4 + p2

7 p6 + (−1p )p3

Table 3.

Using the data in Table 3, it is not hard to conjecture the next result.
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Theorem 5.4. For odd n ≥ 1,

Nn,p = pn−1 +

(
−1

p

)n−1
2

p
n−1
2 .

Proof. Use (5.2) and induction (the inductive step goes from n to n+ 2). �

The reader is invited to use (5.2) to get a formula for Nn,p when n is even following the
same methods as we used when n is odd. The case of even n > 2 will turn out not to be
necessary to prove the main law of quadratic reciprocity, so we omit it.

Remark 5.5. There is a geometric interpretation for part of Theorem 5.4. The number
Nn,p counts the solutions to a single equation in n-dimensional space over Z/(p) and the
dominant term in its formula (for p fixed and n large) is pn−1. A single equation in n
variables is one constraint, so intuitively its solution space has “dimension” n−1. (Compare
with Euclidean space, where the solution set of x2+y2+z2 = 1 in R3 is a sphere, which is a
surface and thus locally looks 2-dimensional: 2 = 3− 1.) The standard (n− 1)-dimensional

space (Z/(p))n−1 has size pn−1, and ±p(n−1)/2 in Theorem 5.4 is much smaller than pn−1

for large n, so to a first approximation the “(n− 1)-dimensional unit hypersphere”

x21 + · · ·+ x2n = 1

in (Z/(p))n has about as many points as the standard (n−1)-dimensional space (Z/(p))n−1.

Theorem 5.6. When p and q are distinct odd primes, ( qp) = (−1)(p−1)/2···(q−1)/2(pq ).

Proof. In Theorem 5.4, let n = q. That is, we look at

Nq,p = |{(x1, . . . , xq) ∈ (Z/(p))q : x21 + · · ·+ x2q = 1}|.
By Theorem 5.4,

Nq,p = pq−1 +

(
−1

p

) q−1
2

p
q−1
2

= pq−1 + (−1)
p−1
2
· q−1

2 p
q−1
2 .

This is an exact formula for the number of solutions to x21 + · · ·+x2q = 1 in Z/(p). Reducing

the formula for Nq,p modulo q, pq−1 becomes 1 and p
q−1
2 becomes (pq ):

(5.3) Nq,p ≡ 1 + (−1)
p−1
2
· q−1

2

(
p

q

)
mod q.

Now we will compute Nq,pmod q by a wholly different method and compare to (5.3).
The number Nq,p counts solutions over Z/(p) to the polynomial equation x21 + · · ·+ x2q = 1

in q variables. The polynomial x21 + · · ·+ x2q is symmetric in its q variables. Therefore the
solution set counted by Nq,p is closed under cyclic shifts: if (x1, x2, . . . , xq) is a solution, so
are (x2, x3, . . . , x1), (x3, x4, . . . , x2), and so on. All solutions have q coordinates, and q is
prime, so either a solution has no cyclic shifts besides itself (all xi are equal) or it has q
cyclic shifts. Therefore solutions where the coordinates are not all equal come in (disjoint)
collections of size q. By counting Nq,p mod q, only the solutions with all coordinates equal
matter in the counting, so

Nq,p ≡ |{x ∈ Z/(p) : qx2 = 1}| mod q.
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How many solutions x are there to qx2 = 1 in Z/(p)? If q is a square in Z/(p) then there
are two solutions. If q is a nonsquare then there are no solutions. In both cases, the number
of solutions is 1 + ( qp). Comparing this to (5.3), we obtain

1 +

(
q

p

)
≡ 1 + (−1)

p−1
2
· q−1

2

(
p

q

)
mod q.

Subtracting 1 from both sides,(
q

p

)
≡ (−1)

p−1
2
· q−1

2

(
p

q

)
mod q.

Both sides of this congruence are ±1, so being congruent modulo q > 2 implies they are
equal in Z, and that is the main law of quadratic reciprocity. �

Remark 5.7. We used Nq,p for prime q in the proof of the main law of quadratic reciprocity,
but the proof of the formula for Nn,p (odd n) in Theorem 5.4 used induction on n and
therefore would not have worked if at that earlier point we only let n be prime.

6. Proof by algebraic number theory

When K is a number field that is Galois over Q and p is a prime ideal in OK that is
unramified over the prime p below it, there is a unique σ ∈ Gal(K/Q) such that

(6.1) σ(α) ≡ αp mod p

for all α ∈ OK . We call σ the Frobenius element associated to p and write it as Frobp(K/Q).
This construction is arguably the most important subtle concept in basic algebraic number
theory, and studying its behavior on Q(ζp) and the unique quadratic field inside it turns
out to imply quadratic reciprocity.

There are three properties of Frobenius elements that we will use here: their orders, how
they change when p is replaced by another prime over the same prime number, and their
behavior under restriction to Galois subextensions over Q.

(1) The order of Frobp(K/Q) in Gal(K/Q) is the residue field degree f(p|p). In par-
ticular, Frobp(K/Q) is trivial if and only p splits completely in K (all prime ideals
lying over a prime in a Galois extension of Q have the same residue field degree).

(2) When p′ is another prime ideal in OK lying over p, Frobp(K/Q) and Frobp′(K/Q)
are conjugate in Gal(K/Q). In particular, when Gal(K/Q) is abelian, so conjugacy
classes have one element, the Frobenius elements Frobp(K/Q) are all equal as p runs
over the prime ideals lying over a common prime p. Therefore when Gal(K/Q) is
abelian it makes sense to speak of a Frobenius element in Gal(K/Q) associated to
each prime number p unramified in K: this is the common value of Frobp(K/Q) for
all p lying over p and we write it as Frobp(K/Q).

(3) When Q ⊂M ⊂ K and M/Q is Galois, Frobp(K/Q)|M = Frobp∩M (M/Q) by con-
sidering (6.1) only when α runs over OM . Thus the Frobenius at p in Gal(K/Q)
restricts to the Frobenius at p ∩M in Gal(M/Q). When Gal(K/Q) is abelian, so
Gal(M/Q) is also abelian, this restriction formula can be written as Frobp(K/Q)|M =
Frobp(M/Q) when the prime number p is unramified in K.

Here are two important calculations of Frobenius elements in abelian Galois extensions
of Q.
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Example 6.1. Let K = Q(
√
d) where d is a squarefree integer, so Gal(K/Q) ∼= {±1} in

one way: all groups of order 2 are uniquely isomorphic to each other. When p - 2d, so p is
unramified in K, what is Frobp(K/Q)? It is trivial if and only if p splits completely in K,
which is equivalent to saying x2 − d mod p splits completely in K (that relies on p being
odd to avoid having to pay attention to d mod 4). Thus Frobp(K/Q) is trivial in Gal(K/Q)

if and only if (dp) = 1, so Frobp(K/Q) is nontrivial in Gal(K/Q) if and only if (dp) = −1.

Hence the unique isomorphism Gal(K/Q) → {±1} lets us identify Frobp(K/Q) with (dp).

In this way, Frobenius elements in the quadratic field Q(
√
d) at unramified odd primes can

be interpreted as the Legendre symbol (dp) where p varies.

Example 6.2. Let K = Q(ζm), so Gal(K/Q) ∼= (Z/(m))× by looking at the exponent
mod m by which an automorphism in the Galois group affects ζm (or equivalently, all the
mth roots of unity). When p - m, p is unramified in K (because xm− 1 mod p is separable)
and Frobp(K/Q) is the unique σ ∈ Gal(K/Q) such that (6.1) holds for all α ∈ OK (with p
in (6.1) being any prime ideal lying over p in K). Let this Frobenius element σ correspond
to a mod m under the isomorphism Gal(K/Q)→ (Z/(m))×, meaning σ(ζm) = ζam. Setting
α = ζm in (6.1), we get

(6.2) ζam ≡ ζpm mod p.

In the finite field OK/p, of characteristic p, there are m different mth roots of unity since
p - m, so (6.2) implies ζam = ζpm in K. Thus p ≡ a mod m, so the isomorphism Gal(K/Q)→
(Z/(m))× identifies Frobp(K/Q) with p mod m.

Theorem 6.3. When p and q are distinct odd primes, ( qp) = (−1)(p−1)/2···(q−1)/2(pq ) and

(2p) = 1 if and only if p ≡ 1, 7 mod 8.

Proof. The extension Q(ζp)/Q is Galois with Galois group G ∼= (Z/(p))×, so G has order
p− 1 and the squares in G are a subgroup H with index 2. Let M be the subfield of Q(ζp)
fixed by H, so [M : Q] = [G : H] = 2: M is a quadratic field.

Q(ζp) {1}

M

2

H

2

Q G

We can determine M by ramification. The only prime ramifying in Q(ζp) is p and some
prime ramifies in M , so it must be p. Thus M = Q(

√
±p) where the sign is chosen so that

±p ≡ 1 mod 4 (otherwise 2 would also ramify in M). When p ≡ 1 mod 4 that sign has to
be 1, and when p ≡ 3 mod 4 it has to be −1. Thus the sign is (−1p ), so M = Q(

√
p∗), where

p∗ =

(
−1

p

)
p.

When a prime q 6= p splits in M will now be described two ways, and comparing the two
descriptions will lead to quadratic reciprocity.
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Since p∗ ≡ 1 mod 4 we have OM = Z[(1 +
√
p∗)/2], so [OM : Z[

√
p∗]] = 2. Thus when q

is odd, it splits in M if and only if x2 − p∗ mod q splits, meaning (p
∗

q ) = 1. Also q splits in

M if and only if Frobq(M/Q) is trivial, and Frobq(M/Q) = Frobq(Q(ζp)/Q)|M , so q splits
in M if and only if Frobq(Q(ζp)/Q) is in the kernel of the restriction map G→ Gal(M/Q),
which is H and those are the squares in G. The standard isomorphism G→ (Z/(p))× maps
Frobq(Q(ζp)/Q) to q mod p, so Frobq(Q(ζp)/Q) is a square in G if and only if ( qp) = 1. Thus

(p
∗

q ) = 1 if and only if ( qp) = 1. Legendre symbols have two nonzero values, so (p
∗

q ) = −1 if

and only if ( qp) = −1. Hence (p
∗

q ) = ( qp) in all cases. Since p∗ = (−1p )p = (−1)(p−1)/2p,(
q

p

)
=

(
p∗

q

)
=

(
(−1)(p−1)/2p

q

)
=

(
−1

q

)(p−1)/2(p
q

)
= (−1)(p−1)/2·(q−1)/2

(
p

q

)
.

The Frobenius element reasoning on odd primes also works at 2, so 2 splits in M if
and only if (2p) = 1 (each condition is equivalent to Frob2(M/Q) being trivial). Since

OM = Z[(1+
√
p∗)/2] and (1+

√
p∗)/2 has minimal polynomial x2−x+(1−p∗)/4 in Z[x], 2

splits in M if and only if x2−x+(1−p∗)/4 mod 2 splits. That happens if p∗ ≡ 1 mod 8 and
not if p∗ ≡ 5 mod 8 (these are the only options for p∗ mod 8 since p∗ ≡ 1 mod 4). Check
p∗ ≡ 1 mod 8 if p ≡ ±1 mod 8 and not if p ≡ ±3 mod 8, so 2 splits in M if and only if
p ≡ ±1 mod 8. Thus (2p) = 1 if and only if p ≡ ±1 mod 8. �

Appendix A. Legendre’s attempt to prove quadratic reciprocity

In order to prove the main law of quadratic reciprocity(
q

p

)
= (−1)(p−1)/2·(q−1)/2

(
p

q

)
,

where p and q are distinct odd primes, Legendre considered 8 cases depending on p mod 4,
q mod 4, and (pq ). See Table 4.3 In each case, the main law predicts ( qp) from the other

information. Proving the main law amounts to verifying that the last column of the table
is correct. Our treatment is based on [3, pp. 73–74], [7, pp.6–8], [8, pp. 326–330], and [9].

Case p mod 4 q mod 4 (pq ) ( qp)

1 1 1 1 1?
2 1 1 −1 −1?
3 1 3 1 1?
4 1 3 −1 −1?
5 3 1 1 1?
6 3 1 −1 −1?
7 3 3 1 −1?
8 3 3 −1 1?

Table 4.

We will show how Legendre proved some cases completely and other cases by assuming
the existence of a prime satisfying conditions depending on p and q. An interesting aspect
of Legendre’s work is that it led to the conjecture that there are primes in arithmetic

3Legendre labeled these cases differently. Our ordering corresponds to his theorems 3, 4, 5, 2, 1, 6, 7,
and 8, respectively.



18 KEITH CONRAD

progressions a mod m when (a,m) = 1, which was proved about 50 years later by Dirichlet,
for odd prime m in 1837 [1] and for general m in 1839 [2].

Legendre’s attempt to prove quadratic reciprocity was based on the following important
theorem that he had proved in 1785.

Theorem A.1 (Legendre). If a, b, and c are nonzero integers that are pairwise relatively
prime and squarefree, then the equation

ax2 + by2 + cz2 = 0

has an integral solution (x, y, z) besides (0, 0, 0) if and only if the following two conditions
hold:

(1) a, b, and c are not all of the same sign,
(2) −ab ≡ � mod |c|,−ac ≡ � mod |b|, and −bc ≡ � mod |a|.

Proof. See [4, §3, Chap. 17]. �

What Legendre actually relied on was the following corollary to his theorem.

Corollary A.2. If a, b, and c are nonzero integers that are pairwise relatively prime,
squarefree, not all of the same sign, and are all 1 mod 4, then either −ab 6≡ � mod |c| or
−ac 6≡ � mod |b| or −bc 6≡ � mod |a|.

Proof. Using a, b, c ≡ 1 mod 4 we will show ax2 + by2 + cz2 = 0 has no integral solution
(x, y, z) other than (0, 0, 0), and then find out consequences of that from Theorem A.1.

If ax2 + by2 + cz2 = 0 has an integral solution besides (0, 0, 0), then divide through the
equation by the highest power of 2 that goes into x, y, and z in order to assume that x or y
or z is odd. Then when we reduce the equation mod 4 it becomes x2 + y2 + z2 ≡ 0 mod 4,
which is impossible unless x, y, and z are all even, and they are not.

Since a, b, and c fit the hypotheses of Theorem A.1 and they are not all of the same
sign, the only way ax2 + by2 + cz2 = 0 could have no integral solution besides (0, 0, 0) is if
−ab 6≡ � mod c or −ac 6≡ � mod b or −bc ≡ � mod a. �

Among the 8 cases for quadratic reciprocity in Table 4, several are contrapositive pairs:
1 and 2, 3 and 6, and 4 and 5. So it suffices to focus on 1, 3, 4, 7, and 8. Legendre settled
Cases 4 (thus also 5) and 7 unconditionally using Corollary A.2. To prove the remaining
cases, he used Corollary A.2 and a choice of an auxiliary prime ` satisfying a condition mod
4 and two Legendre symbol conditions depending on p and q. The existence of that prime
` was not proved, which makes his proofs of Cases 1, 3, and 8 incomplete.

Cases 4 and 7: See Table 5. The choices of a, b, and c there satisfy −ab ≡ � mod |c| and
−ac ≡ � mod |b| since (−1q ) = −1 and |b| = 1, so Corollary A.2 implies −bc 6≡ � mod |a|,
which in Cases 4 and 7 translates into q 6≡ � mod p, so ( qp) = −1 in Cases 4 and 7.

Case p mod 4 q mod 4 (pq ) a b c

4 1 3 −1 p 1 −q
7 3 3 1 −p 1 −q

Table 5.

To settle Cases 1, 3, and 8, Legendre used an auxiliary prime ` as described in Table
6. An asterisk in a column means there is no assumption about ` for that column and the
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Legendre symbol in that column will be deduced from other columns. We place Case 8 first
in the table because the role of an auxiliary prime there appears simpler than its role in
Cases 1 and 3, as we will see below.

Case p mod 4 q mod 4 (pq ) ` mod 4 ( `p) (p` ) ( `q ) a b c

8 3 3 −1 1 −1 ∗ −1 −p ` −q
1 1 1 1 3 ∗ −1 1 p q −`
3 1 3 1 1 −1 ∗ −1 p −q `

Table 6.

Case 8: Assume there is a prime ` as in the first row of Table 6. From ( `p) = −1 we get

(p` ) = −1 by Case 4 proved above. From ( `q ) = −1 we get ( q` ) = −1 by Case 4 above. Then

−ab = p` ≡ � mod q and −ac = −pq ≡ � mod ` (since ` ≡ 1 mod 4). By Corollary A.2

−bc 6≡ � mod |a|, which says ( q`p ) = −1, and that implies ( qp) = 1.

Case 1: Assume there is a prime ` as in the second row of Table 6. From (p` ) = −1 we get

( `p) = −1 by Case 4 above, and from ( `q ) = 1 we get ( q` ) = 1 by Case 5, which is equivalent to

Case 4. This implies −ab = −pq ≡ � mod ` (since ` ≡ 3 mod 4) and −ac = p` ≡ � mod q.

By Corollary A.2 −bc 6≡ � mod |a|, which says ( q`p ) = −1. Thus ( qp) = 1.

Case 3: Assume there is a prime ` as in the third row of Table 6. From ( `p) = −1 we

get (p` ) = −1 by Case 2, which is equivalent to Case 1 above. From ( `q ) = −1 we get

( q` ) = −1 by Case 4 above. Then −ab = pq ≡ � mod ` and −ac = −p` ≡ � mod q (since

q ≡ 3 mod 4). By Corollary A.2 −bc 6≡ � mod |a|, which says ( q`p ) = −1, and that implies

( qp) = 1.

Let’s analyze what we needed to know about auxiliary primes in Cases 1, 3, and 8.
In the proof of Case 8, the auxiliary prime ` satisfies conditions on ` mod 4, ( `p), and

( `q ), which are equivalent to conditions on ` mod 4pq by the Chinese remainder theorem.

Wanting the existence of such ` is why Legendre assumed the existence of primes in suitable
arithmetic progressions.

The auxiliary prime ` in Case 1 is determined by ` mod 4, (p` ), and ( `q ); that ` satisfies a

value for (p` ) looks more subtle than satisfying a value for ( `p). We can bypass the assumption

( `q ) = −1 in Case 1 by changing a, b, and c there: if ` ≡ 3 mod 4 and (p` ) = −1, set

(a, b, c) = (p, 1,−q`). Then −ab = −p ≡ � mod |c| since −p ≡ � mod q and −p ≡ � mod `.
We have −ac ≡ � mod |b| since |b| = 1. Therefore Corollary A.2 implies −bc 6≡ � mod |a|,
so ( q`p ) = −1. By Case 4 from (p` ) = −1 we get ( `p) = −1, so ( q`p ) = −1⇒ ( qp) = 1, which is

the goal in Case 1. So to settle Case 1 we only need a prime ` ≡ 3 mod 4 satisfying (p` ) = −1.
The existence of such ` was demonstrated by Gauss in his first proof of quadratic reciprocity,
and his argument is not as complicated as proving Dirichlet’s theorem. So despite initial
appearances, the existence of an auxiliary prime needed in Case 1 is actually simpler than
the existence of the auxiliary prime in Case 8. Anyway, Legendre never proved the existence
of any auxiliary primes that he needed.

In the proof of Case 3, the auxiliary prime ` satisfies conditions on ` mod 4, ( `p), and ( `q )

like in Case 8, but the proof of Case 3 also relies on Case 1 with primes p and `, so settling
Case 3 needs a second auxiliary prime r such that r ≡ 3 mod 4, (pr ) = −1, and ( r` ) = 1.
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Exercises.

1. Show 35 ≡ � mod 73 in two ways: check 35(73−1)/2 ≡ 1 mod 73 and compute (3573)
using quadratic reciprocity.

2. The number 1777 is prime. Use quadratic reciprocity to determine whether 71, 533,
929, 1083, and 1566 are squares modulo 1777. Make sure to factor the number into
primes first. (Answer: all are squares except 533 and 1566.)

3. By the main law of quadratic reciprocity,(
229

5999

)
=

(
5999

229

)
=

(
45

229

)
=

(
5

229

)
=

(
229

5

)
=

(
4

5

)
= 1

since 229 ≡ 1 mod 4 and 5999 ≡ 45 mod 229. However, 229 actually is not a square
mod 5999. Where was the mistake? And what is 229(5999−1)/2 mod 5999?

4. Use (5.2) to get a formula for Nn,p when n is even.
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