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1. Introduction

The quadratic reciprocity law says that when p and q are distinct odd primes
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Equation (1.1) is called the main law of quadratic reciprocity and the equations in (1.2)
are called the supplementary laws. In words, the main law says

• if p or q is 1 mod 4 then q ≡ � mod p if and only if p ≡ � mod q,1

• if p and q are 3 mod 4 then q ≡ � mod p if and only if p 6≡ � mod q.

The supplementary laws say −1 ≡ � mod p if and only if p ≡ 1 mod 4 and 2 ≡ � mod p if
and only if p ≡ ±1 mod 8.

The equations in (1.1) and (1.2) are expressible without using cases as
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Proofs of quadratic reciprocity usually involve mysterious calculations. it is not any
clearer why quadratic reciprocity should be true after you have read a proof than before
you read the proof. Our goal here is not to prove quadratic reciprocity, but to use it.

2. Square patterns

Using quadratic reciprocity we can work out, for nonzero a ∈ Z, a description of all odd
primes p such that (ap ) = 1.

Example 2.1. Let’s show for primes p 6= 2 that (−2p ) = 1 if and only if p ≡ 1, 3 mod 8.

Since −2 = (−1)2, by multiplicativity (−2p ) = (−1p )(2p), so (−2p ) = 1 precisely when (−1p )

and (2p) are both 1 or when (−1p ) and (2p) are both −1.

• Suppose (−1p ) and (2p) are both 1. That means p ≡ 1 mod 4 and p ≡ 1, 7 mod 8.

Knowing a number mod 8 tells you what it has to be mod 4. Since p ≡ 1 mod 8
implies p ≡ 1 mod 4 and p ≡ 7 mod 8 implies p ≡ 3 mod 4, we have

p ≡ 1 mod 4 and p ≡ 1, 7 mod 8⇐⇒ p ≡ 1 mod 8.

1We write “�” to mean a number is a square.
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Therefore (−1p ) and (2p) are both 1 precisely when p ≡ 1 mod 8.

• Suppose (−1p ) and (2p) are both −1, which means p ≡ 3 mod 4 and p ≡ 3, 5 mod 8.

Arguing as in the previous case shows

p ≡ 3 mod 4 and p ≡ 3, 5 mod 8⇐⇒ p ≡ 3 mod 8,

so (−1p ) and (2p) are both −1 precisely when p ≡ 3 mod 8.

The supplementary laws describing when (−1p ) = 1 and when (2p) = 1 are worth memo-

rizing. I’ve never been able to remember the rule describing when (−2p ) = 1, and when I

need it I look it up.

Example 2.2. Let’s use quadratic reciprocity to describe the primes p 6= 2 such that
(3p) = 1. Necessarily p 6= 3. By the main law of quadratic reciprocity,(
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This is 1 when both factors are 1 or both are −1. We have

(−1)(p−1)/2 = 1⇐⇒ p ≡ 1 mod 4

and (p
3

)
= 1⇐⇒ p ≡ 1 mod 3.

The conditions p ≡ 1 mod 4 and p ≡ 1 mod 3 together are equivalent to p ≡ 1 mod 12.
Also,

(−1)(p−1)/2 = −1⇐⇒ p ≡ 3 mod 4

and (p
3

)
= −1⇐⇒ p ≡ 2 mod 3.

These two congruence conditions on p are the same as the single condition p ≡ 11 mod 12.
Thus, for p 6= 2, (3p) = 1 if and only if p ≡ 1, 11 mod 12, or equivalently p ≡ ±1 mod 12.

Example 2.3. For which primes p 6= 2, when is (−3p ) = 1? Using the main law of quadratic

reciprocity and the supplementary law for (−1p ),(
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Thus, for p 6= 2, (−3p ) = 1 if and only if (p3) = 1, which means p ≡ 1 mod 3.

Example 2.4. For which primes p 6= 2 is (5p) = 1? By quadratic reciprocity, (5p) = (p5), so

(5p) = 1 is the same as (p5) = 1, which is equivalent to p ≡ 1, 4 mod 5. Thus when p 6= 2,(
5

p

)
= 1⇐⇒ p ≡ 1, 4 mod 5.

Example 2.5. For which primes p 6= 2 is (−5p ) = 1? We have(
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This is 1 when both terms are 1 or both are −1. Since

(−1)(p−1)/2 = 1⇐⇒ p ≡ 1 mod 4,
(p

5

)
= 1⇐⇒ p ≡ 1, 4 mod 5
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and

(−1)(p−1)/2 = −1⇐⇒ p ≡ 3 mod 4,
(p

5

)
= −1⇐⇒ p ≡ 2, 3 mod 5,

we need to solve pairs of congruence conditions on p mod 4 and p mod 5:

p ≡ 1 mod 4, p ≡ 1 mod 5⇐⇒ p ≡ 1 mod 20,

p ≡ 1 mod 4, p ≡ 4 mod 5⇐⇒ p ≡ 9 mod 20,

p ≡ 3 mod 4, p ≡ 2 mod 5⇐⇒ p ≡ 7 mod 20,

p ≡ 3 mod 4, p ≡ 3 mod 5⇐⇒ p ≡ 3 mod 20

by the Chinese remainder theorem. Thus when p 6= 2, (−5p ) = 1⇐⇒ p ≡ 1, 3, 7, 9 mod 20.

Example 2.6. For which primes p 6= 2 is (10p ) = 1?

Since (10p ) = (2p)(5p), we need either (2p) = 1 and (5p) = 1 or (2p) = −1 and (5p) = −1.

Suppose first that both (2p) and (5p) are 1. From the supplementary law, (2p) = 1 if and

only if p ≡ 1, 7 mod 8. From Example 2.4, (5p) = 1 if and only if p ≡ 1, 4 mod 5. We need

to solve

p ≡ 1 or 7 mod 8 and p ≡ 1 or 4 mod 5.

Each mod 8 condition and mod 5 condition is the same as one mod 40 condition. Altogether
the four ways of pairing off the conditions mod 8 and mod 5 combine to give the congruences

(2.1) p ≡ 1, 9, 31, 39 mod 40.

Now suppose that (2p) and (5p) equal −1. We have (2p) = −1 if and only if p ≡ 3, 5 mod 8

and (5p) = −1 if and only if p ≡ 2, 3 mod 5. Combine the congruences

p ≡ 3, 5 mod 8, p ≡ 2, 3 mod 5

in pairs (one mod 8 and one mod 5) to give the congruences

(2.2) p ≡ 3, 13, 27, 37 mod 40.

From (2.1) and (2.2), if p 6= 2, then (10p ) = 1⇐⇒ p ≡ 1, 3, 9, 13, 27, 31, 37, 39 mod 40.

Remark 2.7. It turns out when a is nonzero in Z, the set of primes {p 6= 2 : (ap ) = 1} can

be described by congruence conditions on p mod 4|a|. If a = −1 this means a condition on
p mod 4 (see the rule for (−1p )), if a = ±2 this means conditions on p mod 8 (see the rule for

(2p) and Example 2.1), and if a = 10 this means a condition on p mod 40 (see Example 2.6).

Sometimes we can use congruence conditions on p mod |a| (see Examples 2.3 and 2.4 when
a is −3 and 5), but those can also be written as conditions on p mod 4|a|, e.g., p ≡ 1 mod 3
is the same as p ≡ 1, 7 mod 12 when p is prime.

Exercises.

1. Use quadratic reciprocity to show (6p) = 1⇐⇒ p ≡ 1, 5, 19, 23 ≡ ±1,±5 mod 24 and

(−6p ) = 1⇐⇒ p ≡ 1, 5, 7, 11 mod 24.
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3. Elementary Cases of Dirichlet’s Theorem

Dirichlet’s theorem says that whenever a and m are relatively prime integers, there are
infinitely many primes p ≡ a mod m. The general proof involves a combination of analysis
and algebra. It turns out that some special cases of Dirichlet’s theorem can be proved by
much simpler methods that follow the strategy of Euclid’s proof that there are infinitely
many primes.

Theorem 3.1. There are infinitely many primes p ≡ 1 mod 4 and there are infinitely many
primes p ≡ 3 mod 4.

Proof. It is easier to treat the case p ≡ 3 mod 4, so we do that first. If primes p1, . . . , pr
satisfy pi ≡ 3 mod 4 (such as 3, 7, and 11), consider

N = 4p1 · · · pr − 1.

This number is odd, and by its definition N ≡ 3 mod 4.
Since N > 1, it has a prime factor. If every prime factor of N were 1 mod 4 then

we’d have N ≡ 1 mod 4 since N (as a positive integer) is the product of its prime factors
(with repetition) and numbers that are 1 mod 4 have a product that is also 1 mod 4. But
N ≡ 3 mod 4. Therefore N has a prime factor p 6≡ 1 mod 4, which forces p ≡ 3 mod 4 since
N is odd. The prime p is different from the pi’s since p | N but no pi divides N . Therefore
no finite list of primes {p1, . . . , pr} that are 3 mod 4 is all the primes that are ≡ 3 mod 4,
so infinitely many primes are 3 mod 4.

That reasoning does not work to show there are infinitely many primes p ≡ 1 mod 4 by
changing the −1 to +1 in the definition of N because when an integer greater than 1 is
1 mod 4 it need not have a prime factor that is 1 mod 4: consider 21 and 33.

To show there are infinitely many primes p ≡ 1 mod 4, we will use quadratic expressions
to define N (by comparison, the formula for N above is linear in the product p1 · · · pr).

If p1, . . . , pr are all primes ≡ 1 mod 4 (such as 5, 13, and 17), let

N = (2p1p2 · · · pr)2 + 1 > 1.

Then N is odd and is 1 mod 4. Since N > 1, it has a prime factor. Let p be a prime
dividing N . Then

N ≡ 0 mod p =⇒ −1 ≡ (2p1 · · · pr)2 mod p,

so −1 ≡ � mod p, which implies p ≡ 1 mod 4. (We showed each prime factor of this N is
1 mod 4.) The prime p is not any of p1, . . . , pr since those don’t divide N . Thus no finite
list of primes that are ≡ 1 mod 4 is complete, so infinitely many primes are 1 mod 4.2 �

Remark 3.2. The proof above for modulus 4 goes back to V. A. Lebesgue [3] in 1856.

Theorem 3.3. There are infinitely many primes p ≡ 4 mod 5.

Proof. One such prime is 19. If p1, . . . , pr are primes ≡ 4 mod 5, let

N = (2p1p2 · · · pr)2 − 5 > 1.

Then N is not divisible by 2, 5, or any of p1, . . . , pr. Let p be any prime factor of N ,
so 5 ≡ � mod p. Therefore, since p 6= 2 or 5, the characterization of when 5 ≡ � mod p

2Dirichlet’s theorem has a quantitative aspect, saying when (a,m) = 1 that the set of primes p ≡ a mod m
has positive density among all primes. In the case m = 4 this says the sets of primes p ≡ 1 mod 4 and
p ≡ 3 mod 4 each have density 1/2 in all the primes. The elementary proofs of special cases of Dirichlet’s
theorem that we are presenting here don’t have any quantitative aspect like that.
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(Example 2.4) tells us p ≡ 1 or 4 mod 5: all prime factors of N are 1 mod 5 or 4 mod 5.
To show N has a prime factor that is 4 mod 5 we argue by contradiction. If every prime
factor of N is 1 mod 5, then N ≡ 1 mod 5, since N (as a positive integer) is the product
of its prime factors (with repetition) and numbers that are 1 mod 5 have a product that is
also 1 mod 5. However, N ≡ 4 mod 5 since p2i ≡ 1 mod 5 for all i. (This is where we use
all pi ≡ 4 mod 5.) Therefore some prime factor p of N is not 1 mod 5. The only option left
is that p ≡ 4 mod 5. The prime p is different from p1, . . . , pr, so there are infinitely many
primes ≡ 4 mod 5. �

In all these proofs, we used a polynomial whose values have special congruence conditions
on their prime factors, e.g., to show p ≡ 4 mod 5 infinitely often we relied on the fact that
an integer of the form n2 − 5 with n even and n 6≡ 0 mod 5 is only divisible by primes
p ≡ 1, 4 mod 5. (When p | (n2−5), 5 mod p is a square and p 6= 2, 5.) Table 1 is a summary
of the polynomial and the square condition used for each progression above.

Progression Polynomial Square condition

1 mod 4 x2+ 1 −1 ≡ � mod p
3 mod 4 x− 1 None
4 mod 5 x2 − 5 5 ≡ � mod p

Table 1. Polynomials used in elementary proofs of Dirichlet’s theorem above.

Exercises.

1. Prove there are infinitely many primes p ≡ 1 mod 3 and infinitely many primes
p ≡ 2 mod 3 in the style of the proof of Theorem 3.1. (Hint: To treat p ≡ 1 mod 3
use N = (2p1p2 · · · pr)2 + 3.

2. Prove each of the following congruence conditions is satisfied by infinitely many
primes using a Euclid-style proof.

(i) p ≡ 3 mod 8 using x2 + 2,
(i) p ≡ 5 mod 8 using x2 + 1,
(ii) p ≡ 7 mod 8 using x2 − 2,

4. Square patterns and Mordell’s equation

The equation y2 = x3 + k, for k ∈ Z, is called Mordell’s equation, due to Mordell’s work
on it throughout his life. A natural number-theoretic task is describing all of its solutions
in Z or Q, either qualitatively (decide if there are finitely or infinitely many solutions in
Z or Q) or quantitatively (list or otherwise conveniently describe all such solutions). In
1920, Mordell [4] showed for each nonzero k ∈ Z that y2 = x3 +k has finitely many integral
solutions.3 Siegel proved a similar finiteness theorem about the integral solutions to a wider
class of cubic polynomial equations in two variables, so the finiteness of the number of
integral solutions to a Mordell equation is also often attributed to Siegel too.

Example 4.1. The only integral solutions to y2 = x3−2 are (x, y) = (3,±5). This example
goes back to Fermat, who challenged British mathematicians to prove it.

3Large tables of k and the integral solutions of y2 = x3 + k are at https://hr.userweb.mwn.de/numb/

mordell.html and https://secure.math.ubc.ca/∼bennett/BeGa-data.html.

https://hr.userweb.mwn.de/numb/mordell.html
https://hr.userweb.mwn.de/numb/mordell.html
https://secure.math.ubc.ca/~bennett/BeGa-data.html
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We will use square patterns mod primes to show certain Mordell equations have no
integral solutions. Specifically, we will use the following descriptions of when −1, 2, and −2
are squares modulo odd primes p:

−1 ≡ � mod p ⇐⇒ p ≡ 1 mod 4,

2 ≡ � mod p ⇐⇒ p ≡ 1, 7 mod 8,

−2 ≡ � mod p ⇐⇒ p ≡ 1, 3 mod 8.

Theorem 4.2. The equation y2 = x3 + 11 has no integral solutions.

Proof. Assume there is an integral solution (x, y) and reduce modulo 4:

y2 ≡ x3 + 3 mod 4.

Here is a table of values of y2 and x3 + 3 modulo 4:

y y2 mod 4 x x3 + 3 mod 4
0 0 0 3
1 1 1 0
2 0 2 3
3 1 3 2

The only common value of y2 mod 4 and x3 + 3 mod 4 is 0, so y is even and x ≡ 1 mod 4.
Now rewrite y2 = x3 + 11 by adding 16 to both sides:

(4.1) y2 + 16 = x3 + 27 = (x+ 3)(x2 − 3x+ 9).

The integer x2 − 3x + 9 is positive since it equals (x − 3/2)2 + 27/4, which is a sum of
positive numbers. Since x ≡ 1 mod 4, we get x2 − 3x + 9 ≡ 3 mod 4, so x2 − 3x + 9 is a
positive integer that is 3 mod 4. Therefore, by the same reasoning used in the earlier proof
that there are infinitely many primes congruent to 3 mod 4, x2− 3x+ 9 must have a prime
factor p with p ≡ 3 mod 4. Then y2 + 16 ≡ 0 mod p by (4.1), so −16 ≡ � mod p. Since p
is odd, we can turn that congruence into −1 ≡ � mod p, which implies p ≡ 1 mod 4 since
p is odd, and this contradicts p ≡ 3 mod 4. �

Remark 4.3. The equation y2 = x3+11 has rational solutions, such as (x, y) = (−7/4, 19/8).
In fact it has infinitely many rational solutions.

Remark 4.4. A common elementary way to show a polynomial equation with integer
coefficients has no Z-solution is to show it has no solution mod m for some m ≥ 2, e.g.,
x2− 10y2 = 2 has no Z-solution since it has no solution mod 5. That method can’t be used
to prove some y2 = x3 + k has no Z-solution since the congruence y2 ≡ x3 + k mod m has
a solution for all m ≥ 2 no matter what k is. Some discussion about this when m is prime
and a prime power can be read at https://math.stackexchange.com/questions/875983/
and https://mathoverflow.net/questions/134352.

Theorem 4.5. The equation y2 = x3 − 6 has no integral solutions.

Proof. Assume there is an integral solution. If x is even then y2 ≡ −6 ≡ 2 mod 8, but
2 mod 8 is not a square. Therefore x is odd, so y is odd and x3 = y2 + 6 ≡ 7 mod 8. Also
x3 ≡ x mod 8 (true for all odd x), so x ≡ 7 mod 8.

Rewrite y2 = x3 − 6 as

(4.2) y2 − 2 = x3 − 8 = (x− 2)(x2 + 2x+ 4),

https://math.stackexchange.com/questions/875983/
https://mathoverflow.net/questions/134352
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with x2 + 2x + 4 ≡ 72 + 2 · 7 + 4 ≡ 3 mod 8. Since x2 + 2x + 4 = (x + 1)2 + 3 is positive,
it must have a prime factor p ≡ ±3 mod 8 because if all of its prime factors are ±1 mod 8
then x2 + 2x+ 4 ≡ ±1 mod 8, which is not true. Let p be a prime factor of x2 + 2x+ 4 with
p ≡ ±3 mod 8. Since p divides y2− 2 by (4.2), we get y2 ≡ 2 mod p. Thus 2 ≡ � mod p, so
p ≡ ±1 mod 8, which is a contradiction.

We can get a contradiction using the factor x−2 also. Since x ≡ 7 mod 8, x−2 ≡ 5 mod 8.
Also x− 2 > 0, since if x ≤ 2 and x− 2 ≡ 5 mod 8 then x ≤ −1, but then x3− 6 is negative
so it can’t be a square. From x− 2 being positive and congruent to 5 mod 8, it has a prime
factor p ≡ ±3 mod 8 and then y2 ≡ 2 mod p and we get a contradiction in the same way as
before. �

Theorem 4.6. The equation y2 = x3 + 6 has no integral solutions.

Proof. Mordell [5, p. 22-23], [6, p. 70] proved this using Z[
√

6]. I learned the simpler
method we use here, which resembles the proof of Theorem 4.5, from Shiv Gupta and Tracy
Driehaus.

Assume there is an integral solution (x, y) to y2 = x3 + 6. First we will show x is odd,
and in fact x ≡ 3 mod 8. If x is even then y2 ≡ 6 mod 8, which is impossible. Thus x is odd,
so y is odd and x3 = y2 − 6 ≡ −5 ≡ 3 mod 8. Since x3 ≡ x mod 8, we have x ≡ 3 mod 8.

Rewrite y2 = x3 + 6 as

(4.3) y2 + 2 = x3 + 8 = (x+ 2)(x2 − 2x+ 4),

with x2 − 2x + 4 ≡ 32 − 2 · 3 + 4 ≡ 7 mod 8. For each prime factor p of x2 − 2x + 4,
y2 + 2 ≡ 0 mod p, so −2 ≡ � mod p, and therefore p ≡ 1, 3 mod 8 (Example 2.1). Then,
since x2 − 2x+ 4 = (x− 1)2 + 3 is positive and 32 ≡ 1 mod 8, x2 − 2x+ 4 is 1 or 3 mod 8.
We showed before that this number is 7 mod 8, so we have a contradiction.

To get a contradiction using the factor x + 2, first note that this number is positive,
since if x + 2 < 0 then y2 + 2 ≤ 0, which is impossible. For a prime p dividing x + 2,
y2 + 2 ≡ 0 mod p, so p ≡ 1 or 3 mod 8. Therefore x + 2 ≡ 1 or 3 mod 8. However, since
x ≡ 3 mod 8 we have x+ 2 ≡ 5 mod 8, which is a contradiction. �

Our next theorem uses both conditions for −1 mod p and −2 mod p to be squares.

Theorem 4.7. The equation y2 = x3 − 24 has no integral solutions.

Proof. We take our argument from [?, pp. 271–272], which is based on [?, p. 201].
Assuming there is an integral solution (x, y), we show x is even. Rewrite y2 = x3− 24 as

y2 + 16 = x3 − 8 = (x− 2)(x2 + 2x+ 4).

The factor x2 +2x+4 equals (x+1)2 +3, which is at least 3. If x is odd then (x+1)2 +3 ≡
3 mod 4, so (x+1)2 +3 has a prime factor p such that p ≡ 3 mod 4. Then y2 ≡ −16 mod p,
so −1 ≡ � mod p. This contradicts the condition p ≡ 3 mod 4. Thus x is even, so y is even.

From y2 = x3 − 24 we get 8 | y2, so 4 | y. Write x = 2x′ and y = 4y′. Then 16y′2 =
8x′3 − 24, which implies 2y′2 = x′3 − 3, so x′ is odd and x′ > 1. Rewrite 2y′2 = x′3 − 3 as

2(y′2 + 2) = x′3 + 1 = (x′ + 1)(x′2 − x′ + 1).

The factor x′2 − x′ + 1 is odd and greater than 1. Let p be a prime factor of it, so
y′2 ≡ −2 mod p, which implies p ≡ 1 or 3 mod 8. Then x′2 − x′ + 1 is a product of
primes that are all 1 or 3 mod 8, so x′2 − x′ + 1 ≡ 1 or 3 mod 8. We have

y′2 ≡ 0, 1, or 4 mod 8 =⇒ x′3 = 2y′2 + 3 ≡ 3 or 5 mod 8 =⇒ x′ ≡ 3 or 5 mod 8.
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Then x′2 − x′ + 1 ≡ 1 − x′ + 1 ≡ 2 − x′ ≡ 5 or 7 mod 8. That contradicts x′2 − x′ + 1 ≡
1 or 3 mod 8. �

The equations y2 = x3 + 6, y2 = x3− 6, and y2 = x3− 24 each have no rational solution,
but proving that is much more involved than the arguments above proving that they have
no integral solution.

In the exercises below, use methods like those used above. In each case, begin by showing
x is odd (this is trickier for the third exercise).

Exercises.

1. Show y2 = x3 − 3 has no integral solution. (Hint: y2 + 4 = x3 + 1).
2. Show y2 = x3 − 9 has no integral solution. (Hint: y2 + 1 = x3 − 8).
3. Show y2 = x3 − 12 has no integral solution. (Hint: y2 + 4 = x3 − 8).

5. Solvability of p = x2 − dy2

When d in Z is not a square, determining prime values of x2 − dy2 is a task in number
theory going back to the beginning of the subject. Fermat and Euler both looked at the
cases d = −1 and d = 2: x2 + y2 and x2 − 2y2. They proved for odd primes p that

p = x2 + y2 ⇐⇒ p ≡ 1 mod 4

and

p = x2 − 2y2 ⇐⇒ p ≡ ±1 mod 8.

The congruence conditions on the right sides are the odd primes such that −1 ≡ � mod p
and 2 ≡ � mod p. There is in fact a general connection between determining when a prime
p has the form x2−dy2 in Z and when d ≡ � mod p. We’ll prove the simpler direction first.

Theorem 5.1. Let p be prime and d in Z not be a square. If p = x2 − dy2 in Z then
d ≡ � mod p.

Proof. When p = x2 − dy2 in Z, p - y by contradiction: if p | y then p | x2, so p | x, but
then x2 − dy2 is divisible by p2, which contradicts x2 − dy2 being equal to p.

Now reduce the equation p = x2 − dy2 modulo p: x2 ≡ dy2 mod p. Since y 6≡ 0 mod p,
divide by y2 to get d ≡ � mod p. �

The converse to Theorem 5.1 is true when d = −1 and when d = 2. That is,

−1 ≡ � mod p =⇒ p = x2 + y2 for some x, y ∈ Z,

2 ≡ � mod p =⇒ p = x2 − 2y2 for some x, y ∈ Z.

However, in general the converse implication

(5.1) d ≡ � mod p =⇒ p = x2 − dy2 for some x, y ∈ Z

has counterexamples. Here are two cases where (5.1) fails.

Example 5.2. Taking d = 10 and p = 3, we have 10 ≡ 1 ≡ � mod 3, but 3 6= x2 − 10y2 in
Z by reducing mod 5, since 3 6≡ � mod 5.

Example 5.3. Taking d = 3 and p = 11, we have 3 ≡ 52 ≡ � mod 11, but 11 6= x2 − 3y2

in Z by reducing mod 3 since 11 ≡ 2 6≡ � mod 3.
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There is a result very close to (5.1) when the ring Z[
√
d] = {a+b

√
d : a, b ∈ Z} has unique

factorization. When d is small, Z[
√
d] has unique factorization when d = −1 (that’s the

Gaussian integers Z[i]), d = ±2, and d = 3 because these rings are all Euclidean domains.

There is not unique factorization in Z[
√
d] when d = −3 and d = ±5. Techniques from

algebraic number theory allow you to prove a ring like Z[
√
d] has unique factorization with-

out having to determine whether or not it is Euclidean. As an example, Z[
√

14] was known
in the 19th century to have unique factorization, but it was proved to be Euclidean (by
Malcolm Harper) only in 2004. Rings with unique factorization need not be Euclidean: see
Section 5 in https://kconrad.math.uconn.edu/blurbs/ringtheory/euclideanrk.pdf.

Theorem 5.4. Let d be an integer that is not a square. If Z[
√
d] has unique factorization

then for all primes p,

d ≡ � mod p =⇒ ±p = x2 − dy2 mod p for some x, y ∈ Z.

The implication here differs from (5.1) in a slight way: it says p or −p is x2 − dy2 in
Z. Maybe −p has that form while p does not. Consider d = 3: since Z[

√
3] has unique

factorization, Theorem 5.4 says that if 3 ≡ � mod p then p or −p is x2 − 3y2. So from
3 ≡ 52 mod 11, either 11 or −11 is x2 − 3y2 in Z. We saw 11 6= x2 − 3y2 in Z in Example
5.3, but −11 is x2 − 3y2 using x = 1 and y = 2. Thus the minus sign in ±p in Theorem 5.4
is essential in general. Now let’s prove Theorem 5.4.

Proof. By hypothesis d ≡ n2 mod p for some integer n , so p | (n2 − d) in Z. Inside Z[
√
d]

we have n2 − d = (n +
√
d)(n −

√
d), so p | (n +

√
d)(n −

√
d) in Z[

√
d]. We will use this

divisibility relation to show p is reducible in Z[
√
d].4

The number p is not a unit in Z[
√
d]: we can’t have p(a + b

√
d) = 1 for a and b in Z.

Thus p is either reducible or irreducible in Z[
√
d]. Because Z[

√
d] has unique factorization,

if p were irreducible then

p | (n+
√
d)(n−

√
d) =⇒ p | (n+

√
d) or p | (n−

√
d) in Z[

√
d].

Thus p(a+ b
√
d) = n±

√
d for some choice of sign on the right side and some a and b in Z.

Then pb = ±1 in Z, which is a contradiction. We have shown p is not reducible in Z[
√
d],

so it must be reducible:

(5.2) p = αβ

where α and β in Z[
√
d] are not units.

To make more progress we will use the norm map on Z[
√
d]. When α = x+ y

√
d with x

and y in Z, set α = x− y
√
d and the norm of α is defined to be

N(α) = αα = x2 − dy2.
This is in Z and a direct calculation shows the norm is multiplicative: N(αβ) = N(α) N(β)

for all α and β in Z[
√
d]. Also N(m) = m2 when m ∈ Z. Note x2 − dy2 ≥ 0 when d < 0

(N(x+yi) = x2+y2 and N(x+y
√
−2) = x2+2y2), while x2−dy2 may be positive or negative

when d > 0 depending on x and y, e.g., N(1+2
√

2) = 1−8 = −7 and N(3+
√

2) = 9−2 = 7.
Returning to (5.2), take the norm of both sides:

(5.3) p2 = N(αβ) = N(α) N(β) in Z.

4Prime numbers often become reducible in quadratic rings: in Z[i], 3 is irreducible but 2 and 5 are not:
2 = (1 + i)(1 − i) and 5 = (1 + 2i)(1 − 2i).

https://kconrad.math.uconn.edu/blurbs/ringtheory/euclideanrk.pdf
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The possible values of N(α) are ±1, ±p, or ±p2 (norms may be negative when d > 0).
If N(α) = 1 then αα = 1, so α is a unit, which is false. If N(α) = −1 then αα = −1,

so α(−α) = 1 and again α is a unit, which is again false. Thus N(α) 6= ±1. Similarly,
N(β) 6= ±1, which means N(α) 6= ±p2. The only options remaining for N(α) are ±p.
Writing α = x+ y

√
d, we get

x2 − dy2 = ±p. �

When d < 0, we never have −p = x2 − dy2 in Z since −d > 0, so for negative d the
conclusion in Corollary 5.5 can be written as: p = x2−dy2 in Z if and only if d ≡ � mod p.
When d > 0, we can turn −p = x2 − dy2 into p = x2 − dy2 (for new x and y, of course) if

we can write −1 as a norm from Z[
√
d]. Indeed, when −p = x2 − dy2 = N(x + y

√
d) and

−1 = a2 − db2 = N(a+ b
√
d), multiply the equations to get

p = N((a+ b
√
d)(x+ y

√
d)) = x′2 − dy′2

where we set x′+y′
√
d = (a+b

√
d)(x+y

√
d). For example, from−7 = 12−2·22 = N(1+2

√
2)

and −1 = N(1 +
√

2), we get 7 = N((1 + 2
√

2)(1 +
√

2) = N(5 + 3
√

2) = 52 − 2 · 72. Also
−1 = N(1−

√
2), so 7 = N((1 + 2

√
2)(1−

√
2)) = N(−3 +

√
2) = (−3)2− 2 · 12 = 32− 2 · 12.

Corollary 5.5. Let d ∈ Z not be a square. When Z[
√
d] has unique factorization and p is

prime, p or −p is x2 − dy2 in Z if and only if d ≡ � mod p.
If either d < 0, or if d > 0 and −1 = a2 − db2 in Z, then p = x2 − dy2 in Z if and only

if d ≡ � mod p.

Proof. The direction (⇒) is due to Theorem 5.1 (while that proof only looked at p = x2−dy2,
the same reasoning works for −p = x2 − dy2) and does not require any hypotheses about

Z[
√
d]. The direction (⇐) is Theorem 5.4.

That we can drop the condition about −p when d < 0 or −1 is a norm from Z[
√
d] when

d > 0 is explain by the paragraph preceding this corollary. �

Example 5.6. The rings Z[i], Z[
√

2], Z[
√
−2], and Z[

√
3] all have unique factorization

since they are Euclidean domains and −1 = N(1 +
√

2). Taking d = −1, 2, −2, and 3 in
Corollary 5.5,

p = x2 + y2 in Z⇐⇒ −1 ≡ � mod p,

p = x2 − 2y2 in Z⇐⇒ 2 ≡ � mod p,

p = x2 + 2y2 in Z⇐⇒ −2 ≡ � mod p,

±p = x2 − 3y2 in Z⇐⇒ 3 ≡ � mod p.

Example 5.7. Being able to write a prime p as x2 + 5y2 in Z requires −5 ≡ � mod p by
Theorem 5.1, but we don’t expect the converse to hold since Z[

√
−5] does not have unique

factorization. Indeed, the converse direction really doesn’t hold: see Exercise 5.2.

Remark 5.8. When d is squarefree, d 6≡ 1 mod 4, and Z[
√
d] does not have unique factor-

ization, the converse to Theorem 5.1 always fails: there are infinitely many primes p such
that d ≡ � mod p but p and −p are not x2 − dy2 in Z. See Exercise 5.4.

Exercises.

1. The first 5 primes p such that −2 ≡ � mod p are 2, 3, 11, 17, 19. Theorem 5.6 says
these primes are all x2 + 2y2 in Z. Determine such x and y for each of these primes.
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2. By Example 2.4, 5 ≡ � mod p if and only if p = 2 or p ≡ 1, 4 mod 5.
a) Show that if a prime p satisfies −p = x2−5y2 for some x and y in Z, then also

p = x′2 − 5y′2 for some x′ and y′ in Z.
b) Find a prime p such that 5 ≡ � mod p but p doesn’t have the form x2−5y2 in

Z. By Corollary 5.5, we can conclude that Z[
√

5] does not have unique factorization
without writing down a specific counterexample to unique factorization in Z[

√
5].

c) Verify that the equation 4 = 2 · 2 = (
√

5 + 1)(
√

5− 1) is an explicit counterex-
ample to unique factorization in Z[

√
5].

3. By Example 2.5, (−5p ) = 1 ⇐⇒ p ≡ 1, 3, 7, 9 mod 20. Since Z[
√
−5] does not have

unique factorization, we don’t expect for primes p that −5 ≡ � mod p is always
equivalent to p = x2 + 5y2 in Z.

a) Show that when p ≡ 3, 7 mod 20, p 6= x2 + 5y2 in Z.
b) The primes below 100 that are 1, 9 mod 20 are 29, 41, 61, and 89. In each

case, show p = x2 + 5y2 in Z.
4. This exercise is for those who have studied algebraic number theory. Suppose Z[

√
d]

is the ring of integers of Q(
√
d), so d is squarefree and d 6≡ 1 mod 4.

a) If p is a prime ideal in Z[
√
d] whose ideal norm is the prime number p, then

show ±p = x2 − dy2 in Z if and only if p is a principal ideal.
b) When a prime p splits completely in Z[

√
−5], so (p) = pp′ where p and p′ are

distinct prime ideals, show p and p’ are principal if and only if p ≡ 1, 9 mod 20.
(Hint: the class number of Q(

√
−5) is 2 and the nontrivial ideal class is represented

by the ideal p2 lying over 2, where (2) = p22. When p is nonprincipal, pp2 is principal,
say (x+ y

√
−5), so taking ideal norms shows 2p = x2 + 5y2.)

c) When Z[
√
d] does not have unique factorization, so the class number h of

Q(
√
d) is greater than 1, show the set of principal prime ideals in Z[

√
d] has density

1/h in the set of all prime ideals in Z[
√
d], so the set of non-principal prime ideals

in Z[
√
d] has density 1 − 1/h. Explain why this implies there are infinitely many

non-principal prime ideals in Z[
√
d] with prime ideal norm and thus infinitely many

prime numbers p such that d ≡ � mod p and neither p nor −p is x2 − dy2 in Z.

6. Solving x2 ≡ a mod p when a solution exists

For an odd prime p and an integer a 6≡ 0 mod p, suppose we use quadratic reciprocity to
see that (ap ) = 1, so the congruence x2 ≡ a mod p has a solution Is there a systematic way

to actually find a solution (not just by a brute force search)? We will describe two such
methods: the Tonelli–Shanks algorithm and Cipolla’s algorithm. They both need as input
a quadratic non-residue mod p.

The Tonelli–Shanks algorithm was first discovered by Alberto Tonelli5 [8] and rediscovered
many years later by Dan Shanks [7]. To motivate it, let’s suppose (ap ) = 1 and p ≡ 3 mod 4.

A direct formula for a square root of a mod p in this case is a(p+1)/4:

(a(p+1)/4)2 = a(p+1)/2 = a(p−1)/2a ≡ a mod p

since a(p−1)/2 ≡ 1 mod p. The number a(p+1)/4 mod p does not work when p ≡ 1 mod 4 since
(p+ 1)/4 6∈ Z. And using (p− 1)/4 instead of (p+ 1)/4 in the exponent when p ≡ 1 mod 4

also does not lead to a square root of a mod p since (a(p−1)/4)2 = a(p−1)/2 ≡ 1 mod p.

5He is not the analyst Tonelli in the Fubini–Tonelli theorem.
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What can we use as a substitute for (p+ 1)/4 when p ≡ 1 mod 4? Write

p− 1 = 2ek

where e ≥ 1 and k is odd, so 2e is the highest power of 2 dividing p − 1. If p ≡ 3 mod 4
then e = 1 and (p+ 1)/4 = (2k + 2)/4 = (k + 1)/2. Even if p ≡ 1 mod 4, (k + 1)/2 is still
an integer, so we will use (k + 1)/2 for all p as a replacement for (p + 1)/4 from the case
p ≡ 3 mod 4.

Set

x1 = a(k+1)/2 mod p.

Then

(6.1) x21 = ak+1 = aak = ay1 mod p.

where y1 ≡ ak mod p.
The order of y1 mod p divides 2e−1 since

y2
e−1

1 = (ak)2
e−1

= a2
e−1k = a(p−1)/2 ≡ 1 mod p,

where the last step is due to a ≡ � mod p. If y1 ≡ 1 mod p then x21 ≡ a mod p and we are
done. What if y1 6≡ 1 mod p, meaning its order is a factor of 2e−1 other than 1?

The idea now is to extend (6.1) to a sequence of congruences

(6.2) x22 ≡ y2a mod p, x23 ≡ y3a mod p, . . . , x2i ≡ yia mod p, . . .

where yi mod p has order dividing 2e−i, so these orders are dropping. In e steps we’ll reach
x2e ≡ yea mod p where ye mod p has order dividing 2e−e = 1, so ye ≡ 1 mod p and thus
x2e ≡ a mod p. In practice we may get yi ≡ 1 mod p for some i < e, so x2i ≡ a mod p and
we are then done in fewer than e steps.

To build the congruences (6.2) we will use powers of a number mod p with order exactly
2e, and this is where a quadratic non-residue comes in. Use quadratic reciprocity to find b
such that b 6≡ � mod p, so b(p−1)/2 ≡ −1 mod p. Such b may be found by letting b = 2, 3, . . .
and computing ( bp) until ( bp) = −1. In practice it does not take long to find such b, even

by random guessing since half the nonzero numbers mod p are quadratic non-residues. The
generalized Riemann hypothesis implies there is such b ≤ 2(log p)2.

From b(p−1)/2 ≡ −1 mod p, set c := bk mod p. This number c mod p has order 2e since

c2
e

= (bk)2
e

= b2
ek = bp−1 ≡ 1 mod p, c2

e−1
= (bk)2

e−1
= b2

e−1k = b(p−1)/2 ≡ −1 mod p,

so c mod p has order dividing 2e and not dividing 2e−1. Thus its order is exactly 2e. When

0 ≤ i ≤ e, c2
e−i

has order 2e/2e−i = 2i, so we get numbers with order 1, 2, 22, 23, . . . , 2e by

using c2
e
, c2

e−1
, c2

e−2
, c2

e−3
, and so on up to c2

e−e
= bk with order 2e.

Returning to (6.1), where we assume y1 6≡ 1 mod p, its order is 2j where 1 ≤ j ≤ e − 1.

Also c2
e−j

has order 2j . It turns out that the product y1c
2e−j

has 2-power order less than
2j by the following fact.

Fact: in (Z/(p))×, if two elements have equal 2-power order greater than 1, then their
product has smaller 2-power order.

This is due to (Z/(p))× being cyclic, so two elements with equal 2-power order generate
the same subgroup, and in a nontrivial cyclic 2-group with order, say, 2r the product of two
elements with order 2r has order dividing 2r−1 (see Exercise 6.1).
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Multiply both sides of (6.1) by c2
e−j

, which is a square since e− j ≥ 1:

x21c
2e−j ≡ ay1c2

e−j
mod p =⇒ (x1c

2e−1−j
)2 ≡ a(y1c

2e−j
) mod p.

Set x2 = x1c
2e−1−j

mod p and y2 = y1c
2e−j

mod p, so

(6.3) x22 ≡ ay2 mod p

where y2 has 2-power order 2j
′

and j′ ≤ j − 1 ≤ e − 2. If j′ = 0 then y2 ≡ 1 mod p and
x22 ≡ a mod p, so we’re done.

If j′ 6= 0, so 1 ≤ j′ ≤ e − 2, then c2
e−j′

mod p has order 2j
′
, so by the Fact above

y2c
2e−j′

mod p has 2-power order less than 2j
′
. Multiply both sides of (6.3) by c2

e−j′
to get

(x2c
2e−1−j′

)2 ≡ a(y2c
2e−j′

) mod p.

Set x3 = x2c
2e−1−j′

mod p and y3 = y2c
2e−j′

mod p, so

(6.4) x23 ≡ ay3 mod p

where y3 has 2-power order 2j
′′

and j′′ ≤ j′ − 1 ≤ e − 3. If j′′ = 0 then y3 ≡ 1 mod p
and x23 ≡ a mod p, so we’re done. Otherwise we can continue producing the congruences as
in (6.2) where the term yi mod p has 2-power order dividing 2e−i, so we’ll eventually have
some yi ≡ 1 mod p (with i ≤ e) and then x2i ≡ a mod p.

Example 6.1. The number p = 1249 is prime. Since p ≡ 1 mod 8, by quadratic reciprocity
(10p ) = (2p)(5p) = (p5) = (45) = 1. To use the Tonelli–Shanks algorithm to solve x2 ≡ 10 mod p

we need a quadratic non-residue mod p. Check (19p ) = −1, so we can use b = 19.

We have p− 1 = 25 · 39 = 2ek. Set c = bk = 1939 ≡ 305 mod p, which has order 32. (The
proof of the Tonelli–Shanks algorithm said c mod p has order exactly 2e.)

Set a = 10 and x1 = a(k+1)/2 ≡ 294 mod p. Then x21 ≡ 10y1 mod p where y1 = 10k ≡
650 mod p, and y1 mod p has order 16. Also c2 mod p has order 16. Then

x21c
2 ≡ 10y1c

2 mod p =⇒ (x1c)
2 ≡ 10(y1c

2) mod p.

Set x2 = x1c ≡ 991 mod p and y2 = y1c
2 ≡ 911 mod p, so x22 ≡ 10y2 mod p. It turns out

that y2 mod p has order 8. Also c4 mod p has order 8. Then

x22c
4 ≡ 10y2c

4 mod p =⇒ (x2c
2)2 ≡ 10(y2c

4) mod p.

Set x3 = x2c
2 ≡ 334 mod p and y3 = y2c

4 ≡ 664 mod p, so x23 ≡ 10y3 mod p. It turns out
that y3 mod p has order 4. Also c8 mod p has order 4. Then

x23c
8 ≡ 10y3c

8 mod p =⇒ (x3c
4)2 ≡ 10(y3c

8) mod p.

Set x4 = x3c
4 ≡ 482 mod p and y4 = y3c

8 ≡ 1 mod p, so x24 ≡ 10 mod p. We discovered
that 482 mod p is a square root of 10 mod p.

Using a different quadratic non-residue b mod p in the Tonelli–Shanks algorithm may
lead to another c, which may lead to the same or other solution of x2 ≡ 10 mod p. See
Exercise 6.3(b).

Example 6.2. When p = 13, we have 3 ≡ 42 mod 13. Let’s apply Tonelli–Shanks to
x2 ≡ 3 mod p to see what solution we get. Set a = 3 and p − 1 = 12 = 22 · 3 = 2ek. Then
x1 = a(k+1)/2 = 32 = 9 and solving x21 ≡ 3y1 mod p for y1 leads to y1 ≡ 1 mod p (since
81 ≡ 3 mod 13), so we’re done: the Tonelli–Shanks algorithm led us us to x ≡ 9 ≡ −4 mod p,
not 4 mod p and we never got to the step of needing a quadratic non-residue b mod p at all.
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Thus every quadratic non-residue b mod 13 “leads” to the same solution of x2 ≡ 3 mod 13
in the Tonelli–Shanks algorithm for the simple reason that b is never used.

Here is a summary of the Tonelli–Shanks algorithm to solve x2 ≡ a mod p when (ap ) = 1:

Step 1: Write p − 1 = 2ek where e ≥ 1 and k is odd. Set x1 = a(k+1)/2 mod p. It has

order dividing 2e−1.
Step 2: Find b such that ( bp) = −1 and set c = bk mod p, which has order 2e, so c2 mod p

has order 2e−1.
Step 3: Set y1 = ak mod p, so x21 = y1a mod p and y1 mod p has order dividing 2e−1.

Step 4: When x2i ≡ yia mod p and yi has order 2ji dividing 2e−i with yi 6≡ 1 mod p,

multiply both sides by (c2)2
e−1−ji , which also has order 2ji , so x2i+1 ≡ yi+1a mod p where

xi+1 ≡ xic
2e−1−ji mod p and yi+1 ≡ yic

2e−ji mod p. The order of yi+1 mod p is 2ji+1 where
0 ≤ ji+1 < ji.

Step 5: When x2i ≡ yia mod p and yi ≡ 1 mod p, a solution to x2 ≡ a mod p is x = xi.

Since y1 = ak mod p has order dividing 2e−1 and c2 mod p generates the unique subgroup
of order 2e−1 in the cyclic group (Z/(p))×, y1 mod p ∈ 〈c2 mod p〉. Writing y1 ≡ (c2)t =
c2t mod p for t ∈ Z, x21 ≡ y1a ≡ c2ta mod p, so (x1c

−t)2 ≡ a mod p. The solution of

x2 ≡ a mod p that comes from the Tonelli–Shanks algorithm is x1c
−t = a(k+1)/2c−t mod p

where y1 ≡ (c2)t mod p. The steps in the Tonelli–Shanks algorithm are revealing the nonzero
positions in the binary expansion of t mod 2e−1 from the lowest to the highest positions.

Example 6.3. In Example 6.1 we want to solve x2 ≡ 10 mod 1249 where p − 1 = 1248 =
25 · 39 and y1 = 650 mod p and c = 305 mod p, so c2 ≡ 599 mod p. The meaning of the
different powers of c2 mod p that we used here can be seen by writing

1 ≡ y4 ≡ y3c8 ≡ y2c4c8 ≡ y1c2c4c8 ≡ y1c2+4+8 ≡ y1c14 ≡ y1(c2)7 mod p,

so y1 ≡ (c2)−7 mod p. HELP

In the Tonelli–Shanks algorithm, the only role of the quadratic non-residue b mod p is to
give us c = bk mod p, which is guaranteed to have order 2e (the highest power of 2 dividing
p− 1). Once we have c, the number b no longer matters. Moreover, we can use the same c
to solve x2 ≡ a mod p for each quadratic residue a mod p: c is independent of a.

Now we turn to a second algorithm to solve x2 ≡ a mod p when (ap ) = 1, due to Cipolla [1].

This algorithm uses a quadratic non-residue mod p, but in contrast to the Tonelli–Shanks
algorithm, the quadratic non-residue used in Cipolla’s algorithm to solve x2 ≡ a mod p
depends on a mod p. Cipolla’s algorithm also uses fields of order p2, not just Z/(p).

We will need an m ∈ Z/(p) such that m2 − a 6≡ � mod p, namely (m
2−a
p ) = −1. The

next lemma shows nearly 50% of the numbers in Z/(p) fit that condition.

Lemma 6.4. When p is an odd prime and (ap ) = 1, the set{
m ∈ Z/(p) :

(
m2 − a
p

)
= −1

}
has size (p− 1)/2.

Proof. We will prove the complementary set M = {m ∈ Z/(p) : (m
2−a
p ) = 1} in Z/(p) has

size (p+ 1)/2.
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Let

C = {(x, y) ∈ Z/(p)× Z/(p) : y2 − a = x2} = {(x, y) ∈ Z/(p)× Z/(p) : y2 − x2 = a}.
Since y2 − x2 = (y + x)(y − x), the change of variables u = y + x and v = y − x (with
inverse x = (u− v)/2 and y = (u+ v)/2, which makes sense in Z/(p) since p > 2) makes C
bijective with {(u, v) ∈ Z/(p) × Z/(p) : uv = a} and this last set has size p − 1 since u is
nonzero mod p and v is determined by u (and a).

The set M is the image of the projection C → Z/(p) by (x, y) 7→ y. To each number
y ∈ M , how many points (x, y) are there in C? There’s at least one (x, y) in C by the
definition of M . When y2 = a, x must be 0 so we have the single point (0, y) in C. When
y2 6= a, y2 − a 6= 0, so it being a square mod p means it is a square in two ways: there are
two x’s such that (x, y) ∈ C. Thus

|C| =
∑
y∈M
|{x ∈ Z/(p) : (x, y) ∈ C}| =

∑
y∈M
y2 6=a

2 +
∑
y∈M
y2=a

1 = 2(|M | − 2) + 2 = 2|M | − 2,

so |M | = (|C|+ 2)/2 = (p+ 1)/2. �

Since nearly 50% of m in Z/(p) satisfy m2 − a 6≡ � mod p, it is not hard in practice to

find m by randomly picking m in Z/(p) and computing (m
2−a
p ) by quadratic reciprocity

until we find m where that Legendre symbol is −1.
Cipolla’s algorithm solves x2 ≡ a mod p by using a quadratic non-residue of the form

m2−a mod p and a square root of it in a field bigger than Z/(p). Write Z/(p) as Fp. When

(m
2−a
p ) = −1, the polynomial x2 − (m2 − a) in Fp[x] is irreducible. Let r be a root of this

polynomial in an extension of Fp, so the field Fp(r) has order p2: write this field as Fp2 . We
will find a square root of a in Fp2 , and that square root must be in Fp itself when (ap ) = 1,

since a number has at most two square roots in any field.
On the field Fp2 , the pth power map is a field automorphism and rp 6= r since r 6∈ Fp.

Since r is a root of x2 − (m2 − a), rp is also a root and it is not r, so rp is the other root,
which is −r. Now we can write down a square root of a in Fp2 : it is

s := (m+ r)(p+1)/2.

Let’s check this works:

s2 = (m+ r)p+1

= (m+ r)(m+ r)p

= (m+ r)(mp + rp).

Since m ∈ Fp, m
p = m. We already indicated why rp = −r. Thus

s2 = (m+ r)(m− r) = m2 − r2 = m2 − (m2 − a) = a.

Since a is a square in Fp, the square root of it that we just found in Fp2 must be in Fp.
What we just presented is Cipolla’s algorithm. Here is a summary of it.

Step 1: for odd prime p and a ∈ Z/(p) such that (ap ) = 1, let m ∈ Z/(p) be chosen to

satisfy (m
2−a
p ) = −1.

Step 2: Let r be a square root of m2 − a in an extension field of Z/(p). Then s2 = a

where s := (m+ r)(p+1)/2.
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To make this algorithm computationally practical, view the field Fp2 = Fp(r) as the

quotient ring Fp[x]/(x2 − (m2 − a)). Using this lets us express Cipolla’s algorithm in the
following concrete way.

Theorem 6.5. When (ap ) = 1 and m ∈ Z/(p) satisfies (m
2−a
p ) = −1, a mod p has square

root (m+ x)(p+1)/2 in Fp[x]/(x2 − (m2 − a)).

Proof. Use Fp[x]/(x2 − (m2 − a)) as the model of Fp2 in the above calculations, where we

can use r = x mod (x2 − (m2 − a)) since x2 ≡ m2 − a mod (x2 − (m2 − a)). �

Example 6.6. Let p = 41. By quadratic reciprocity, (2p) = 1. To solve x2 ≡ 2 mod p by

Cipolla’s algorithm, check when m = 3 that m2 − 2 = 7 is a quadratic non-residue mod p.
Since (p+ 1)/2 = 21, in the field Fp[x]/(x2 − 7) Cipolla’s algorithm says (3 + x)21 squares
to 2. With a computer, (3 +x)21 = 17 in Fp[x]/(x2− 7), and indeed 172 = 289 ≡ 2 mod 41.

Exercises.

1. If G is a nontrivial cyclic 2-group and x and y in G have the same order 2r, then
prove xy has order dividing 2r−1. This applies in particular to two generators of G.

2. The number 593 is prime. Show ( 17
593) = 1 and use the Tonelli–Shanks algorithm to

solve x2 ≡ 17 mod 593 using the quadratic non-residue 3 mod 593.
3. The number 1249 is prime.

a) Show ( 3
1249) = 1 and solve x2 ≡ 3 mod 593 by the Tonelli–Shanks algorithm

using the quadratic non-residue 7 mod 1249.
b) Solve x2 ≡ 10 mod 1249 by the Tonelli–Shanks algorithm five times using each

of the quadratic non-residues 7, 11, 21, 23, and 29 mod 1249. Sometimes you’ll get
the solution 482 mod 1249 and sometimes you’ll get 767 ≡ −482 mod 1249.

4. Example 6.6 solved x2 ≡ 2 mod 41 using Cipolla’s algorithm with m = 3. Check
that Cipolla’s algorithm to solve x2 ≡ 2 mod 41 can also use m = 4, 6, and 7. In
each case, check whether the algorithm leads to the same solution of x2 ≡ 2 mod 41
as in Example 6.6. (Answer: it does when m = 4 and 6, but not when m = 7.)

5. Write a computer program that carries out the Tonelli–Shanks algorithm. Make
sure to check first that the modulus p in the congruence is prime.

6. In Lemma 6.4, show {m ∈ Z/(p) : (m
2−a
p ) = −1} has size (p+ 1)/2 when (ap ) = −1.

7. What happens if you run the Tonelli–Shanks algorithm or Cipolla’s algorithm to
solve x2 ≡ a mod p in case a 6≡ � mod p?

7. Quadratic reciprocity and division rings

For nonzero a ∈ Z, what can be said about how often (ap ) is 1 or −1?

(1) If a = � in Z, then (ap ) = 1 for all p not dividing 2a.

(2) If a 6= � in Z, then (ap ) = 1 for infinitely many p. This is a special case of a general

theorem: when f(x) is nonconstant in Z[x], there are infinitely many primes p
such that f(x) ≡ 0 mod p has a solution. See https://math.stackexchange.com/

questions/1019538. This does not need quadratic reciprocity.
(3) If a 6= � in Z, then (ap ) = −1 for infinitely many p. See [2, Theorem 3, p. 57], which

is a proof using quadratic reciprocity. The case a = −1 is part of Theorem 3.1.

https://math.stackexchange.com/questions/1019538
https://math.stackexchange.com/questions/1019538
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Using quadratic reciprocity and Dirichlet’s theorem on primes in arithmetic progression,
when a 6= � the two sets of primes {p : (ap ) = 1} and {p : (ap ) = −1} are not only infinite,

but also each has density 1/2 within the set of all primes.
That {(p : (ap ) = −1} is infinite when a 6= � has an application to division rings. What’s

a division ring? In short, it is a possibly noncommutative field. That is, division rings
are defined just like fields except we don’t insist that multiplication is commutative. The
nonzero elements in a division ring are a posssibly noncommutative group under multipli-
cation, so a nonzero element’s multiplicative inverse on the left and right sides are the same
(a general property of all groups).

Example 7.1. The most basic example of a noncommutative division ring is Hamilton’s
quaternions, which is the 4-dimensional R-vector space

H = R + Ri+ Rj + Rk

where multiplication is defined so that real numbers commute with i, j, and k and

• i2 = j2 = k2 = −1,
• ij = k, ji = −k, jk = i, kj = −i, ki = j, and ik = −j.

All of these multiplication rules among i, j, and k are consequences of the four conditions
i2 = −1, j2 = −1, ij = k, and ji = −k. The only quaternions that commute with all
quaternions are the real numbers so that, borrowing a term from group theory, we say R is
the center of H.

To remember the rules for multiplying i, j, and k by each other, put them in alphabetical
order around a circle as below. Products following this order get a plus sign, and products
going against the order get a minus sign, e.g., jk = i and ik = −j.

i j

k

When q = x+ yi+ zj + wk, its conjugate is q = x− yi− zj − wk, and we set the norm
of q to be

N(q) = qq = qq = x2 + y2 + z2 + w2 ≥ 0.

When q 6= 0, so some coefficient of q is nonzero, N(q) is a positive real number and q has
multiplicative inverse q/N(q).

The division ring H can be written not only as a 4-dimensional real vector space, but as
a two-dimensional (left) complex vector space:

(7.1) H = (R + Ri) + (R + Ri)j = C + Cj

where j2 = −1 and jz = zj for all z ∈ C.

Example 7.2. There are no finite examples of noncommutative division rings: Wedderburn
proved all finite division rings are commutative.

Although H was discovered by Hamilton in 1843 somewhat accidentally (he had been
trying to extend multiplication among complex numbers from C to R3), Frobenius proved
35 years later that they have a special role in algebra.
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Theorem 7.3 (Frobenius, 1878). The only noncommutative R-central6 division ring that
is finite-dimensional over R is H.

The following definition generalizes the description of H to rings that are 4-dimensional
over their center, which can be any field not of characteristic 2.

Definition 7.4. Let F be a field not of characteristic 2. A quaternion algebra over F is a
4-dimensional F -vector space

F + Fi+ Fj + Fk

where multiplication is defined so that elements of F commute with i, j, and k and

• i2 = a ∈ F×, j2 = b ∈ F×,
• k = ij = −ji.

This ring is denoted (a, b)F . It is noncommutative since ij 6= ji: ij − ji = 2ij, which is not
0 since 2, i, and j are all units (F does not have characteristic 2). The elements of (a, b)F
that commute with all of (a, b)F are the elements of F , so (a, b)F has center F .

All products among i, j, and k can be worked out from the rules in the definition, e.g.,
k2 = kk = ijij = ij(−ji) = −ij2i = −ibi = −i2b = −ab and jk = jij = −ijj = −bi.

Example 7.5. The Hamilton quaternions H is the quaternion algebra (−1,−1)R.

Example 7.6. Taking F = Q, a = 2, and b = 5,

(2, 5)Q = Q + Qi+ Qj + Qk

where i2 = 2, j2 = 5, and k = ij = −ji, so k2 = −(2)(5) = −10. In analogy to (7.1),

(7.2) (2, 5)Q = (Q + Qi) + (Q + Qi)j = Q(
√

2) + Q(
√

2)j

where j2 = 5 and jα = αj for all α ∈ Q(
√

2). So the ring (2, 5)Q contains Q(
√

2) as a
subfield.

Both (7.1) and (7.2) extend to quaternion algebras (a, b)F where a 6= � in F :

(7.3) (a, b)F = (F + Fi) + (F + Fi)j = F (
√
a) + F (

√
a)j

where j2 = b and jα = α for all α ∈ F (
√
a)

Here are three general properties of quaternion algebras. Proofs of the 2nd and 3rd prop-
erties can be read in Theorems 4.3 and 4.20 in https://kconrad.math.uconn.edu/blurbs/

ringtheory/quaternionalg.pdf.

(1) (a, b)F ∼= (b, a)F for all a and b in F×,
(2) (a, 1)F ∼= M2(F ),
(3) If (a, b)F 6∼= M2(F ) then (a, b)F is a division ring.

Now we will focus on quaternion algebras over Q. Legendre symbols that equal −1 always
lead to 4-dimensional division rings over Q.

Theorem 7.7. If a ∈ Z− {0} and p is an odd prime, then(
a

p

)
= −1 =⇒ (a, p)Q is a division ring.

Proof. This is proved as Theorem 3.9 in https://kconrad.math.uconn.edu/blurbs/ring

theory/quaternionalg.pdf. �

6An F -central division ring means a division ring with center F . It is commutative only when it is F .

https://kconrad.math.uconn.edu/blurbs/ringtheory/quaternionalg.pdf
https://kconrad.math.uconn.edu/blurbs/ringtheory/quaternionalg.pdf
https://kconrad.math.uconn.edu/blurbs/ringtheory/quaternionalg.pdf
https://kconrad.math.uconn.edu/blurbs/ringtheory/quaternionalg.pdf
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Example 7.8. The quaternion algebra (2, 5)Q is a division ring since (25) = −1.

Example 7.9. Is (3, 11)Q a division ring? Since ( 3
11) = 1, it appears we can’t use Theorem

7.7, but (3, 11)Q ∼= (11, 3)Q and (113 ) = −1, so we can use Theorem 7.7 with a = 11 and
b = 3 to see that (3, 11)Q is a division ring.

Example 7.10. When p and q are distinct odd primes, (p, q)Q is a division ring if and only
if (pq ) = −1 or ( qp) = −1. The “only if” direction is not obvious.

Theorem 7.11. If a ∈ Z − {0} and p and q are distinct odd primes, then (a, p)Q and
(a, q)Q are nonisomorphic division rings.

Proof. The case a = −1 is Corollary 5.5 in https://kconrad.math.uconn.edu/blurbs/

ringtheory/quaternionalg.pdf. The proof when a = −1 has all the key ideas needed to
prove the general case. �

Theorems 7.7 and 7.11 tell us there are infinitely many Q-central division rings with
dimension 4 by using (a, p)Q where a is a fixed nonsquare in Z and p runs over the odd
primes such that (ap ) = −1. Moreover, since each quadratic field K is Q(

√
a) for some

nonsquare integer a and Q(
√
a) is contained in (a, p)Q by (7.3), there are infinitely many

Q-central division rings with dimension 4 that contain a specified quadratic field K.
We end this section with some remarks about division rings with center equal to the

p-adic numbers Qp. While there is only one noncommutative finite-dimensional R-central
division ring by Theorem ??, there are many Qp-central division rings, but (i) there are
only finitely many with each dimension (which includes no examples in some dimensions)
and (ii) there is only one example with dimension 4. So when we look in dimension 4, the
situations over R and Qp look the same and both are unlike Q. When p = 2, the unique
Q2-central division ring with dimension 4 is H(Q2), the quaternions with Q2-coefficients.
When p 6= 2, the unique Qp-central division ring with dimension 4 is not H(Qp), which is
isomorphic to the 2 × 2 matrix ring M2(Qp) and that is not a division ring. Instead, the
quaternion algebra (a, p)Qp is a division ring when a ∈ Z is not a square mod p.

Exercises.

1. In (a, b)F = F + Fi + Fj + Fk, show ik = −ki = aj, kj = −jk = bi, and
jk = −kj = −bi. and (a, b)F has center F .

2. For q ∈ (a, b)F , define the conjugate of q = x+yi+zj+wk to be q = x−yi−zj−wk.
a) Show qq = qq = x2 − ay2 − bz2 + abw2 ∈ F . This is called the norm of q and

is denoted N(q), so when N(q) ∈ F×, q has inverse q/N(q).
b) Show q1q2 = q2 q1 for all q1 and q2 in (a, b)F .

3. When b is a square in F×, say b = c2, show (a, b)F ∼= M2(F ) as rings by

1 7→
(

1 0
0 1

)
, i 7→

(
0 1
a 0

)
, j 7→

(
c 0
0 −c

)
, k 7→

(
0 −c
ac 0

)
and extend this to all of (a, b)F by F -linearity. The matrix that k maps to is the
product of the matrices that i and j map to (in that order).

https://kconrad.math.uconn.edu/blurbs/ringtheory/quaternionalg.pdf
https://kconrad.math.uconn.edu/blurbs/ringtheory/quaternionalg.pdf
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8. Quadratic reciprocity in Z[i]

We saw in Theorems 5.1 and 5.4 that if d is an integer that is not a square and Z[
√
d]

has unique factorization, then for all primes p,

d ≡ � mod p⇐⇒ ±p = x2 − dy2 mod p for some x, y ∈ Z.

The reasoning in the proofs of Theorem 5.4 and Corollary 5.5 go through with Z replaced
by Z[i], leading to the next theorem.

Theorem 8.1. Let δ in Z[i] not be a square. If Z[i][
√
δ] has unique factorization then for

all primes π in Z[i],

(8.1) δ ≡ � mod π ⇐⇒ uπ = x2 − δy2 for some x, y ∈ Z[i] and unit u ∈ Z[i]×.

If i = x2 − δy2 for some x, y ∈ Z[i], then uπ can be replaced by π on the right side of the
equivalence.

Proof. It’s left to the reader to prove (8.1). When i = x2− δy2 in Z[i], also powers of i have

that form by multiplicativity of the norm map Z[i][
√
δ]→ Z[i] where x+ y

√
δ 7→ x2 − δy2,

so being able to write uπ as x2 − δy2 in Z[i] implies π itself has that form. �

Example 8.2. It can be shown that Z[i][
√

1 + i] = Z[
√

1 + i] has unique factorization, and
i = x2 − (1 + i)y2 when x = i and y = i, so for all primes π in Z[i],

1 + i ≡ � mod π ⇐⇒ π = x2 − (1 + i)y2 for some x, y ∈ Z[i].

Taking π = 2 + i, we have 1 + i ≡ 4 mod π, so we can write 2 + i = x2 − (1 + i)y2 for
some x and y in Z[i]. A search yields the solution x = 3 and y = 2− i.

To make the condition δ ≡ � mod π explicit in terms of π we can use quadratic reciprocity
in Z[i]. Every prime in Z[i] divides a prime number in Z, and up to unit multiple the only
prime in Z[i] that divides 2 is 1 + i since 2 = (1 + i)(1− i) = (1 + i)(−i)(1 + i) = −i(1 + i)2.
Primes in Z[i] dividing odd prime numbers are called odd. Examples of odd primes in Z[i]
include 2 + i, 2 − i, 3, 7, and 2 + 3i. More generally, Gaussian integers α that are not
divisible by 1 + i are called odd, and this condition is equivalent to N(α) being odd in Z.

When π is an odd prime in Z[i] and α ∈ Z[i], the Legendre symbol (απ ) is defined by

(α
π

)
=


1, if α ≡ � mod π, α 6≡ 0 mod π,

−1, if α 6≡ � mod π,

0, if α ≡ 0 mod π.

Example 8.3. The number 2+3i is prime in Z[i] with N(2+3i) = 13, and 2+3x ≡ 0 mod 13
has solution x = 8, so Z[i]/(2+3i) ∼= Z/(13) by mapping a+bi mod 2+3i to a+8b mod 13.
To determine ( a+bi2+3i) in Z[i] is the same as determining (a+8b

13 ) in Z. Thus ( 1+i
2+3i) = ( 9

13) = 1

and ( i
2+3i) = ( 8

13) = ( 2
13) = −1. That shows 1 + i ≡ 32 mod 2 + 3i and i 6≡ � mod 2 + 3i.

It is easy to by the definition of (απ ) that α ≡ β mod π =⇒ (απ ) = (βπ ). Euler’s criterion
for the Legendre symbol on Z carries over to Z[i]: for odd primes π in Z[i] and α ∈ Z[i],

(8.2)
(α
π

)
≡ α(N(π)−1)/2 mod π,
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which implies the multiplicativity of the Legendre symbol on Z[i]: for odd primes π in Z[i]
and arbitrary α and β in Z[i],

(8.3)

(
αβ

π

)
=
(α
π

)(β
π

)
.

This reduces the calculation of (απ ) to the case when α is an odd prime, i, or 1 + i.
To present the quadratic reciprocity law in Z[i], we will use a normalization of the odd

Gaussian integers that singles out a choice among the 4 unit multiples of each such Gaussian
integer. This is analogous to the way quadratic reciprocity in Z uses positive primes. To
appreciate this point, notice that in Z the prime p in (ap ) plays the role of a modulus, so we

could let p be a negative prime without affecting a Legendre symbol’s value: a ≡ � mod pZ
is the same thing as a ≡ � mod (−p)Z. Thus ( 2

−5) = (25) = −1 and ( 2
−7) = (27) = 1. The

rule (−1p ) = (−1)(p−1)/2, however, is not true when p < 0, e.g., (−1−3) = (−13 ) = −1 while

(−1)(−3−1)/2 = 1, and (−1−5) = (−15 ) = 1 while (−1)(−5−1)/2 = −1. Similarly, the factor

(−1)(p−1)/2·(q−1)/2 in the main law of quadratic reciprocity in Z is not always correct if we
let p or q be negative. Every odd prime in Z is ±1 mod 4, so all odd primes in Z can be
made 1 mod 4 by multiplying them by a suitable sign, and Exercise 8.2 shows how quadratic
reciprocity in Z looks on positive and negative odd primes that are both 1 mod 4.

To normalize odd Gaussian integers in Z[i], the units ±1 and ±i and also Z[i]/(1 + i)3 =
Z[i]/(2+2i) has 4 units that are represented by ±1 and ±i mod 2+2i. Thus when α is odd
in Z[i], there is a unique u ∈ {±1,±i} such that α ≡ u mod 2 + 2i, so u−1α ≡ 1 mod 2 + 2i.
Each odd α has a unique unit multiple that is 1 mod 2 + 2i. When α ≡ 1 mod 2 + 2i, call
α normalized.

Example 8.4. We have 1 + 2i ≡ −1 mod 2 + 2i, so −(1 + 2i) ≡ 1 mod 2 + 2i.

Example 8.5. We have 2− 3i ≡ −i mod 2 + 2i, so i(2− 3i) ≡ 1 mod 2 + 2i.

Two normalized odd Gaussian integers are not unit multiples of each other unless they
are equal, just like positive integers are not unit multiples of each other in Z unless they
are equal.

Here is one way to formulate quadratic reciprocity in Z[i]. Note Gaussian integers that
are 1 mod 2 + 2i are 1 or 3 + 2i mod 4 and are 1, 5, 3 + 2i, or 7 + 2i mod 4(1 + i). This is
like saying integers that are 1 mod 4 are 1 or 5 mod 8 and are 1, 5, 9, or 13 mod 16.

Theorem 8.6. Let π be a normalized odd prime in Z[i]. For a normalized odd prime π′ in
Z[i] that is not equal to π,

(8.4)

(
π′

π

)
=
( π
π′

)
and

(8.5)

(
i

π

)
=

{
1, if π ≡ 1 mod 4Z[i],

−1, if π ≡ 3 + 2i mod 4Z[i]

and

(8.6)

(
1 + i

π

)
=

{
1, if π ≡ 1, 7 + 2i mod 4(1 + i)Z[i],

−1, if π ≡ 5, 3 + 2i mod 4(1 + i)Z[i].
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We call (8.4) the main law of quadratic reciprocity in Z[i] and (8.5) and (8.6) the sup-
plementary laws of quadratic reciprocity for Z[i]. In Z, the main law linking (pq ) and ( qp)

for positive primes depends on p mod 4 and q mod 4 and the supplementary law for (−1p )

depends on p mod 4, while the supplementary law for (2p) depends on p mod 8. In Z[i], the

supplementary law for ( iπ ) depends on π mod 4Z[i], while the supplementary law for (1+iπ )
depends on π mod 4(1 + i)Z[i]. If we had expressed quadratic reciprocity in Z[i] for all odd
primes, not just normalized odd primes, then we’d see that the main law depends on the
odd primes mod 4Z[i].

The supplementary law for ( iπ ) is a simple consequence of Euler’s criterion (8.2), just as

the supplementary law for (−1p ) is in Z: see Exercise 8.3. Proofs of the main law and the

supplementary law for (1+iπ ) in Theorem 8.6 are omitted. You could look at the quartic
reciprocity law in [2, Theorem 2, p. 123] and [2, Exer. 37, Chap. 9] and square them,
since the square of the quartic residue symbol in Z[i] is the Legendre symbol in Z[i]. Note
that in [2] odd Gaussian integers that are 1 mod 2 + 2i are called “primary” rather than
normalized.

Example 8.7. We will determine whether 3− i ≡ � mod 1 + 6i by computing ( 3−i
1+6i). The

number 1 + 6i is prime in Z[i] since its norm 37 is prime in Z, but 1 + 6i is not normalized:
1 + 6i ≡ −1 mod 2 + 2i. The number 3 − i is reducible: its norm is 10 and it factors as
(1 + i)(1− 2i), where the Gaussian prime 1− 2i is not normalized: 1− 2i ≡ −1 mod 2 + 2i.
To express 3− i as a product of a unit, 1 + i, and a normalized prime, write

3− i = (1 + i)(1− 2i) = (1 + i)(−1 + 2i)(−1) = (1 + i)(−1 + 2i)i2,

so (
3− i
1 + 6i

)
=

(
3− i
−1− 6i

)
=

(
1 + i

−1− 6i

)(
−1 + 2i

−1− 6i

)
.

Since−1−6i is normalized and−1−6i ≡ 7+2i mod 2+2i, ( 1+i
−1−6i) = 1 by the supplementary

law for (1+iπ ). Since −1 + 2i and −1− 6i are normalized, by the main law(
−1 + 2i

−1− 6i

)
=

(
−1− 6i

−1 + 2i

)
and 1− 6i ≡ −4 mod −1 + 2i, so(

3− i
1 + 6i

)
=

(
−1 + 2i

−1− 6i

)
=

(
−1− 6i

−1 + 2i

)
=

(
−4

−1 + 2i

)
=

(
(2i)2

−1 + 2i

)
= 1.

Thus 3 − i ≡ � mod 1 + 6i. Explicitly, 3 − i ≡ (2 − 3i)2 mod 1 + 6i, but the quadratic
reciprocity law in Z[i] does not tell us that square root.

Example 8.8. Returning to Example 8.2, when π is a normalized odd prime the supple-
mentary law for (1+iπ ) tells us that

π = x2 − (1 + i)y2 for some x, y ∈ Z[i]⇐⇒ π ≡ 1, 7 + 2i mod 4(1 + i).

Take π = 2 + i as in Example 8.2: π is not normalized, but iπ = −1 + 2i is normalized
and −1 + 2i ≡ 7 + 2i mod 4 + 4i, so we can write iπ as x2 − (1 + i)y2 in Z[i] and thus also
we can write π as x2 − (1 + i)y2 in Z[i] since the unit i is an x2 − (1 + i)y2 in Z[i]. This
approach based on quadratic reciprocity in Z[i] does not require us to explicitly determine
how 1 + i mod π is a square as we did in Example 8.2.
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Exercises.

1. Prove (8.2) and (8.3) by reasoning analogous to proofs in Z.
2. When p and q are primes in Z that may be negative but are both 1 mod 4, show(

q

p

)
= (−1)(|p|−1)/2·(|q|−1)/2

(
p

q

)
.

For example, taking p = −7 and q = −3,(
−3

−7

)
=

(
−3

7

)
=

(
4

7

)
= 1

and

(−1)(|p|−1)/2·(|q|−1)/2
(
q

p

)
= (−1)(3−1)/2·(7−1)/2

(
−7

−3

)
= (−1)

(
2

3

)
= (−1)(−1) = 1.

3. Use Euler’s criterion (8.2) to show ( iπ ) = i(N(π)−1)/2 in Z[i]. (Hint: ±1 and ±i are
incongruent modulo 2 + 2i.) Take cases when π ≡ 1 and 3 + 2i mod 4Z[i] to show
in the first case that ( iπ ) = 1 and in the second case ( iπ ) = −1. Keep in mind that
im for m ∈ Z only depends on m mod 4.

4. By Example 8.3, 1+i ≡ � mod 2+3i. Find x and y in Z[i] such that x2−(1+i)y2 =
2 + 3i.

5. A square root of i is ±ζ8, where ζ8 is a root of unity of order 8.
a) It turns out that Z[i][

√
i] = Z[ζ8] has unique factorization. Use this to show

for all primes π in Z[i] that

i ≡ � mod π ⇐⇒ π = x2 − iy2 mod p for some x, y ∈ Z[i].

(Hint: show i = x2 − iy2 in Z[i] in order to avoid having uπ on the right side with
an ambiguous unit u.

b) Show i ≡ � mod 3Z[i] and solve x2 − iy2 = 3 in Z[i].
c) Show i ≡ � mod (4 + 5i)Z[i] and solve x2 − iy2 = 4 + 5i in Z[i]

6. Use quadratic reciprocity in Z[i] to show ( 4+i
2+5i) = −1. (Hint: neither 4 + i nor

2 + 5i is normalized, so first find unit multiples of these Gaussian primes that are
normalized.)
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