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Lecture 1
What is an elliptic curve?



“It is possible to write endlessly on elliptic curves. (This is not a threat.)”
— Serge Lang, from Elliptic Curves: Diophantine Analysis

Foreword

It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here
with diophantine problems, and we lay the foundations, especially for the theory of
integral points. We review briefly the analytic theory of the Weierstrass function,
and then deal with the arithmetic aspects of the addition formula, over complete
fields and over number fields, giving rise to the theory of the height and its
quadraticity. We apply this to integral points, covering the inequalities of
diophantine approximation both on the multiplicative group and on the elliptic
curve directly. Thus the book splits naturally in two parts.
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with integer coefficients (i.e., a
diophantine equation), we can ask
three basic questions:

@ Can we determine if there are
rational or integral solutions?

@ In the affirmative case, can we
find such a solution?

© Can we describe all such
solutions?
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Given a polynomial equation
f(x1,X%2,...,X) =0

with integer coefficients (i.e., a
diophantine equation), we can ask
three basic questions:

@ Can we determine if there are
rational or integral solutions?

@ In the affirmative case, can we
find such a solution?

© Can we describe all such
solutions?

© (Hilbert’s Tenth Problem over
7) Is there a Turing machine to
decide if f = 0 has solutions in
7?
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Given a polynomial equation
f(x1,X%2,...,X) =0

with integer coefficients (i.e., a
diophantine equation), we can ask
three basic questions:

@ Can we determine if there are
rational or integral solutions?

@ In the affirmative case, can we
find such a solution?

© Can we describe all such
solutions?

© (Hilbert’s Tenth Problem over
7) Is there a Turing machine to
decide if f = 0 has solutions in
Z.? (Davis, Matiyasevich,
Putnam, Robinson: No)
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Examples of diophantine equations and rational points:
@ 3x + 5y =1, aline on the plane

(—3,2) is a point on the line.

@ x? 4 y? = 72, pythagorean triples

(8,4,5) is a pythagorean triple.

o x3 +y® 4+ 73 = 42, expressions of 42 as the sum of three cubes
(—80538738812075974)%+80435758145817515%+12602123297335631°3
is an expression recently found by A. Booker and D. Sutherland.

@ Y4+ 5X*-6X2Y2+6X3Z426X2YZ +10XY?Z —10Y3Z —
82X%Z% — 40XYZ? +24Y2Z2% 4 32XZ° —16YZ% =0,

the cursed curve (the modular curve Xs(13)).

(1,1,2) is a (CM) point on the cursed curve.



Annals of Mathematics 189 (2019), 885-944
https://doi.org/10.4007/annals.2019.189.3.6

Explicit Chabauty—Kim for the split
Cartan modular curve of level 13

By JENNIFER S. BALAKRISHNAN, NETAN DOGRA, J. STEFFEN MULLER,
JAN TUITMAN, and JAN VONK

Abstract

We extend the explicit quadratic Chabauty methods developed in pre-
vious work by the first two authors to the case of non-hyperelliptic curves.
This results in a method to compute a finite set of p-adic points, con-
taining the rational points, on a curve of genus g > 2 over the rationals
whose Jacobian has Mordell-Weil rank g and Picard number greater than
one, and which satisfies some additional conditions. This is then applied
to determine the rational points of the modular curve Xs(13), completing
the classification of non-CM elliptic curves over Q with split Cartan level
structure due to Bilu—Parent and Bilu—Parent—Rebolledo.



A gift from Martin Davis, the diophantine equation

9(x® +7y?)? — 7(U? + 7v?)? = 2.
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What diophantine equations can we solve?
@ Polynomials in one variable, f(x) = 0, with integer coefficients:

f(x) = anx" 4+ ap 1 x" "+ +ax+a=0.

Divisibility theory: if X, = T is a root, then m | ap and n | ap.

@ Polynomials in two variables, degree 1:
L:ax+ by =c.

Theory of greatest common divisors: there is an integral point on
Lif and only if ged(a, b) | c.

@ Polynomials in two variables, degree 2:
C:ax’+by’>+cxy+dx+ey+f=0.

Hasse—Minkowski (local-to-global) theory determines existence of
one point. Stereographic projection finds the rest.



A parametrization via stereographic projection of the rational points on
the circle x? + y? = R? of radius R is given by

_ 2Rm R(m? —1)
o= (Gt wn)
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C:f(X~|,X2) =0

When C is smooth (projectively!), of degree 3 (genus 1), we lack an
algorithm that will determine whether there are any rational points on
C, or, if one exists, an algorithm that will determine all the rational
points on the curve C.

Definition

An elliptic curve E over a field F is a (projective) smooth cubic curve
(genus one), with at least one point defined over F.

@ Fact: every elliptic curve has a (Weierstrass) model of the form
V2 £ aixy + asy = X3 + axx® + asx + ag, for some a; € F.
@ We are interested in determining all F-rational points on E:

E(F)={(x0,¥) € E:Xx0,¥0o € F}U{O=[0:1:0]}.
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An éelliptic curve E over a field F is a (projective) smooth cubic curve
(genus one), with at least one point defined over F.

Example
Let £E/Q be the curve y? = x3 — x.




CZf(X1,X2) =0

When C is smooth (projectively!), of degree 3 (genus 1), we lack an
algorithm that will determine whether there are any rational points on
C, or, if one exists, an algorithm that will determine all the rational
points on the curve C.

Definition

An éelliptic curve E over a field F is a (projective) smooth cubic curve
(genus one), with at least one point defined over F.

Example
Let E£/Q be the curve y? = x® — x. Then:

E(Q) = {O’ (070)7 (1 ) 0)7 (_170)}a

where O = [0 : 1 : 0], in projective coordinates, in the “point at infinity.”
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CZf(X1,X2) =0

When C is smooth (projectively!), of degree 3 (genus 1), we lack an
algorithm that will determine whether there are any rational points on
C, or, if one exists, an algorithm that will determine all the rational
points on the curve C.

Definition

An elliptic curve E over a field F is a (projective) smooth cubic curve
(genus one), with at least one point defined over F.

Example
Let £/Q be the curve X3 + Y3 =1.
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CZf(X1,X2) =0

When C is smooth (projectively!), of degree 3 (genus 1), we lack an
algorithm that will determine whether there are any rational points on
C, or, if one exists, an algorithm that will determine all the rational
points on the curve C.

Definition

An elliptic curve E over a field F is a (projective) smooth cubic curve
(genus one), with at least one point defined over F.

Example

Let £/Q be the curve X2 + Y3 = 1. Then, E(Q) is in bijection with
E'(Q), where E' : y? = x3 — 432 via ¢»: E — E’ given by

S - <X1+2Y7 36)((X+—YY)> () = <3664;y7366;}’>
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Some examples of diophantine equations, or problems that are
connected to elliptic curves:

@ Fermat’s last theorem was proved via the so-called Frey curve
Y2 = X(X — A")(X + B"), where A" + B" = C" .

@ The congruent number problem is connected to Y? = X% — n°X.
@ The ABC conjecture is logically equivalent to specific upper

bounds on an integral solution (xg, yp) to Mordell’s equation
Y2 = X3 + k in terms of the parameter k.

@ Hilbert’s Tenth Problem over a ring of integers of a number field
F can be shown to be undecidable if a well-known conjecture
(finiteness of Sha) holds for elliptic curves over F.

@ Elliptic curve cryptography is widely used in internet
applications (e.g., WhatsApp end-to-end encryption).
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Example
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e > f > 1. Hence, n = ef(e? — f2) is a congruent number. For
instance, n = 30 is the area of (5,12,13).

The number n = 1 is not the area of a right triangle with rational sides
(proved by Fermat).



The Congruent Number Problem |

Let n > 1 be a natural number. Is there a right triangle (a, b, ¢) with
rational sides a, b, ¢ € Q whose area is precisely n?

Example |

The number n = 6 is a congruent number because it is the area of the
right triangle (3, 4, 5).

Example

The right triangles are parametrized (e? — f2, 2ef, €2 + f2) for
e > f > 1. Hence, n = ef(€? — f?) is a congruent number. For
instance, n = 30 is the area of (5,12,13).

The number n = 1 is not the area of a right triangle with rational sides
(proved by Fermat). The number n = 5 is a congruent number, but it is
not the area of a right triangle with integer side lengths.



In Flos (circa 1225), Leonardo “Bigollo” Pisano



In Flos (circa 1225), Leonardo “Bigollo” Pisano (a.k.a. Fibonacci)
found a right triangle of area n = 5 in response to a challenge by the
Roman Emperor Frederick II:

32041
236 )
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The connection between congruent numbers and elliptic curves:

Theorem (Congruent numbers < Points on elliptic curves)
There is a 1-1 correspondence between the sets

e {(ab,c): @&+ =c? % =n}and

o {(x,y):y?=x%—nPx, y #0},

given by
i) nb 2n? (x.y) s X2 —n? 2nx x2+n?
) ) C— a7 C— a )] 7y y ) y b y .
Example

Fibonacci’s triangle (3,22, 4) of area n = 5 maps to the point

25 75
P~ (3%)

on the curve y? = x3 — 25x.




The connection between congruent numbers and elliptic curves:

Theorem (Congruent numbers < Points on elliptic curves)
There is a 1-1 correspondence between the sets

e {(ab,c): @&+ =c? % =n}and

o {(x,y):y?=x%—nPx, y #0},

given by
i) nb 2n? (x.y) s X2 —n? 2nx x2+n?
) ) C— a7 C— a )] 7y y ) y b y .
Example

Fibonacci’s triangle (3,22, 4) of area n = 5 maps to the point

25 75
P~ (3%)

on the curve y? = x3 — 25x. (And P maps to Fibonacci’s triangle.)
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correspond to points on y? = x3 — 25x with non-zero y-coordinate.



The connection between congruent numbers and elliptic curves:

Theorem (Congruent numbers <« Points on elliptic curves)
There is a 1-1 correspondence between the sets

e {(ab,c): @+ =c? % =n}and

o {(x,y):y?=x%—rPx, y #0},
given by

2 2_ 2 o 2, 2
(a,b,cm< nb_ 2m >,(x,yw<x 20X X *”).

c—-ac—a y y y

Via the previous correspondence, right triangles with area n =5
correspond to points on y? = x3 — 25x with non-zero y-coordinate.

Let’s grab some chalk and use the theory of elliptic curves to find
another right triangle of area 5.
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Theorem

There is a 1-1 correspondence between the sets
e {(ab,c): @+ =c? % =n}and
o {(x,y):y?=x3—nPx, y #0},

given by
2 2 2 2 2
(a,b,c)%(nb,zn >,(x, )'_><x n72nx7x +n>'
c—ac—a y y y
Example

The point P = (188!, 62279) on the curve y? = x3 — 25x corresponds to
the triangle

1519 4920 3344161
492 1519’ 747348

of area 5.




For afixed n > 1, the curve y® = x3 — n?x is an example of an elliptic
curve.

Definition

An elliptic curve E over a field F is a (projective) smooth cubic curve
(genus one), with at least one point defined over F.

We are interested in determining all F-rational points on E:

E(F)={(x0,¥) € E: X0, o€ FfU{O=1[0:1:0]}.



For afixed n > 1, the curve y® = x3 — n?x is an example of an elliptic
curve.

Definition
An elliptic curve E over a field F is a (projective) smooth cubic curve
(genus one), with at least one point defined over F.

We are interested in determining all F-rational points on E:

E(F)={(x0,¥) € E: X0, o€ FfU{O=1[0:1:0]}.

KEY FEATURE OF ELLIPTIC CURVES:

The set of F-rational points E(F) of an elliptic curve E/F can be
endowed with a group structure, defined geometrically (also
algebraically through groups of divisors).
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Louis Mordell
1888 — 1972

Theorem (Mordell, 1922)

Let E/Q be an elliptic curve. Then, the group of Q-rational points on E,
denoted by E(Q), is a finitely generated abelian group. In particular,

E(Q) = E(Q)ors ® Zre where E(Q)qors is a finite subgroup, and
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Louis Mordell André Weil
1888 — 1972 1906 — 1998

Theorem (Mordell-Weil, 1928)

Let F be a number field, and let A/ F be an abelian variety. Then, the
group of F-rational points on A, denoted by A(F), is a finitely
generated abelian group. In particular, A(F) = A(F)iors © ZF4/F where
A(F)tors is a finite subgroup, and Ra/r > 0.
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The following are some examples of elliptic curves and their
Mordell-Weil groups:

@ Thecurve E;/Q : y? = x3 + 6 satisfies £1(Q) = {O}.
@ The curve E,/Q : y? = x3 + 1 has only 6 rational points:

E»(Q) = {0, (2, 43), (0, £1),(~1,0)} = Z/6Z.

© The curve E3/Q : y? = x3 — 2 does not have any rational torsion
points other than O. However, E3(Q) = ((3,5)) = Z.

@ The elliptic curve E4/Q : y? = x® + 7105x2 + 1327104 x features
both torsion and infinite order points. In fact, £4(Q) = Z/4Z & Z3.
The torsion subgroup is generated by the point of order 4
T = (1152,111744). The free part is generated by

P, = (—6912,6912), P, = (—5832, 188568), Py = (—5400, 206280).
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E(Q) = E(Q)tors @ VALL

What torsion subgroups E(Q)iors are possible?

Barry Mazur
Theorem (Levi-Ogg Conjecture; Mazur, 1977)
Let E/Q be an elliptic curve. Then

Z/MZ with1 <M <10 orM =12, or

E ~
(Qors {Z/ZZ ®7/2MZ  with1 < M < 4.

Moreover, each possible group appears infinitely many times.
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The elliptic curve E/Q : y? + xy + y = x3 + x2
has a point P = (0, 0) of order 4.



The curve E/Q : y? — y = x3 — x2 has a point P = (0, 1) of order 5.



The elliptic curve E/Q : y? = x3 + 1 has a point P = (2, 3) of order 6.
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The elliptic curve 30030bt 1 has a point of order 12.

¥2 + xy = x® — 749461 x + 263897441



Zagreb (Croatia), June 25-29, 2018.
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E(Q) = E(Q)tors @ Al
What ranks R of elliptic curves over Q are possible?

Open Problem

What values can Rg g take? In particular, can Rg,q be arbitrarily
large, or is it uniformly bounded?




Example (2006): Elkies’ elliptic curve of rank > 28 (= 28 under GRH!)

y2+xy +y=x3 - x? - (2006776241557552658503320820933854
2750930230312178956502)x + (3448161179503055646703298569
0390720374855944359319180361266008296291939448732243429)

Independent points of infinite order:

Py =[—2124150091254381073292137463,
259854492051899599030515511070780628911531]

P, =[2334509866034701756884754537,
18872004195494469180868316552803627931531]

Ps; =[-1671736054062369063879038663,
251709377261144287808506947241319126049131]

Noam Elkies



P4 =[2139130260139156666492982137,
36639509171439729202421459692941297527531]
Ps =[1534706764467120723885477337,
85429585346017694289021032862781072799531]
Ps =[—2731079487875677033341575063,
262521815484332191641284072623902143387531]
P7 =[2775726266844571649705458537,
12845755474014060248869487699082640369931]
Ps =[1494385729327188957541833817,
88486605527733405986116494514049233411451]
Py =[1868438228620887358509065257,
59237403214437708712725140393059358589131]
Pio =[2008945108825743774866542537,
47690677880125552882151750781541424711531]
P11 =[2348360540918025169651632937,
17492930006200557857340332476448804363531]



P12 =[-1472084007090481174470008663, 246643450653503714199947441549759798469131]
P13 = [2924128607708061213363288937, 28350264431488878501488356474767375899531]
P14 =[5374993891066061893293934537, 286188908427263386451175031916479893731531]
P15 =[1709690768233354523334008557, 71898834974686089466159700529215980921631]
P16 =[2450954011353593144072595187, 4445228173532634357049262550610714736531]
P17 =[2969254709273559167464674937, 32766893075366270801333682543160469687531]
P18 = [2711914934941692601332882937, 2068436612778381698650413981506590613531]
P19 =[20078586077996854528778328937, 2779608541137806604656051725624624030091531]
P20 = [2158082450240734774317810697, 34994373401964026809969662241800901254731]
P21 =[2004645458247059022403224937, 48049329780704645522439866999888475467531]
P22 = [2975749450947996264947091337, 33398989826075322320208934410104857869131]
P23 =[-2102490467686285150147347863, 259576391459875789571677393171687203227531]
P24 =[311583179915063034902194537, 168104385229980603540109472915660153473931]
P25 =[2773931008341865231443771817, 12632162834649921002414116273769275813451]
P26 = [2156581188143768409363461387, 35125092964022908897004150516375178087331]
P27 = [3866330499872412508815659137, 121197755655944226293036926715025847322531]
P28 = [2230868289773576023778678737, 28558760030597485663387020600768640028531]



Open Problem
Can the rank Rgq of an elliptic curve be arbitrarily large?

Conjectures and heuristic arguments for and against:

@ Néron (1950), Honda (1960): (bounded).

@ Cassels (1966), Tate (1974), Mestre (1982), Silverman (1986,
2009), Brumer (1992), Ulmer (2002), Farmer—Gonek—Hughes
(2007): No (unbounded).

@ Rubin-Silverberg (2000), Granville (2006), Watkins (2015),
Park—Poonen—-Voight—-Wood (2016): (bounded).
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Melanie Matchett Wood, John Voight.
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Jennifer Park, Bjorn Poonen,

The ranks Rg g are bounded, and there are only finitely many rank

Conjecture (Park, Poonen, Voight, Wood)
values above 21. }
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Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) = E(Q)tors @ A

The torsion subgroups over Q
are the “poster child” of what an
arithmetic group should be like.
Torsion subgroups are:

@ Computable

@ Classified

@ Parametrized in families
@ Statistically understood
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Donald Anderson, first poster child.



Goal

Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.
E(@) = E(Q)tors S ZRE/Q

1 @ Computable
5 » Nagell-Lutz theorem.
c— : ‘ ‘ » Division polynomials.

2 2 4 6

ThecurveE:y2+xy+y: X3+ X2 — 4x +5(42.a5)
has torsion subgroup ((—1,3)) = Z/8Z.



Goal

Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.
E(Q) = E(@)tors D ZRE/Q

. @ Classified
; » Mazur’s theorem:

3 2 4 G Z/MZ or
E ~ ’
s (Qors {Z/ZZ & Z/2NZ
"’ where 1 <M < 10or M =12,
E and 1 < N <4,

Thecurve E: y2 + xy +y = x3 + x% — 4x + 5 (42.a5)

has torsion subgroup ((—1, 3)) =~ Z/8Z.
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" @ Parametrized in families
. » Kubert et al.:
e

3 ; ; ; e.g.,
p elliptic curves with Z/8Z tors.:
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with b= (2t —1)(t— 1) and
a= b/t forany t #£0,1/2,1.
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Goal

Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.
E(Q) = E(Q)tors & 2/

" @ Parametrized in families
5 » Kubert et al.:
{ 5 ; :

e.g.,
3 elliptic curves with Z/8Z tors.:

E:y?+(1-a)xy—by? = x>*—bx?

with b= (2t —1)(t— 1) and

a= b/t forany t #£0,1/2,1.
The curve E/ : y? + %xy - %y =x3 - %XZ (g 42.25)
has torsion subgroup ((—1,3)) = Z/8Z.



Goal

Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.
E(Q) = E(Q)ors ® zRere

@ Statistically understood

m% » Harron—-Snowden (2013):
! Let Ng(X) be the number of
— ‘ ‘ ‘ elliptic curves E/Q with (naive)

- 2 ‘ 5 height < X and E(Q)ors = G.
Then, there are positive

» constants Cy, Co, d(G) such
5 that

Ci1 X8 < Ng(X) < CoX9),
Thecurve E: y? + xy + y = x3 + x2 — 4x + 5 (42.a5)

has torsion subgroup ((—1,3)) = Z/8Z. Eg, d({O}) — 5/6 and
d(z/8Z) = 1/12.



Goal
Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) = E(Q)tors ® Zer0
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107 How about the rank?

- Computable?

- Classified?

- Parametrized in families?
- Statistically understood?

The curve E : y? = x3 — 4x + 4 (88.a1) has trivial torsion
subgroup and rank 1, with E(Q) = ((2, —2)) =~ Z.



Goal

Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.
E(Q) = E(Q)tors ® Zer0
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10 How about the rank?

The curve E : y? = x3 — 4x + 4 (88.a1) has trivial torsion
subgroup and rank 1, with E(Q) = ((2, —2)) =~ Z.
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Is the Rank Computable?

@ Analytically? Yes*, if we assume B-S-D, the rank is the order of
vanishing of the Hasse—Weil L-function L(E,s) at s = 1.

(* Computing values requires ~ /Ng Fourier coefficients, and issues certifying zeroes numerically.)

The Birch and Swinnerton-Dyer conjecture is wide open, with only
some special cases (rank < 1) known to be true.

A\

-

Bryan Birch Sir Peter Swinnerton-Dyer



Is the Rank Computable?

@ Analytically? Yes*, if we assume B—S-D, the rank is the order of
vanishing of the Hasse—Weil L-function L(E,s) at s = 1.
(* Computing values requires = /Ng Fourier coefficients, and issues certifying zeroes numerically.)
The Birch and Swinnerton-Dyer conjecture is wide open, with a one
million dollar reward attached to it (it is one of the Millenium Problems
proposed by the Clay Math Institute).
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Is the Rank Computable?

@ Analytically? Yes*, if we assume B—S-D, the rank is the order of
vanishing of the Hasse—Weil L-function L(E,s) at s = 1.

(* Computing values requires ~ /Ng Fourier coefficients, and issues certifying zeroes numerically.)

@ Algebraically? Yes*, if we assume III(E/Q)[p*] is finite, for
some prime p, then the method of p-descent determines E(Q).

(* Computing the rank may involve computing models for high p-descendants.)

The method of descent is based on the following exact sequence:

0 — E(Q)/p"E(Q) —> Selp(E/Q) —> LI(E/Q)[p"] —> O,

where Selpr(E/Q) is a finite, computable, cohomological group
defined by finitely many local conditions.



2-Descent

(2
wl\cm S-e,Qz(E/@) = <S£,|,§Eﬂr'vs€m> = C/ZZ)



2-Descent: Example £ /®

\3‘: X>- 105196 X ~12970320

% Ses

A
y = -9xtz00x 232

Se.

\3": 2999+ 1020%" 115 ¢ Se,q

‘32 Ix30ex 12312

Se,2
g"': Yyt 2244y +289

g(.: 3

g% 289 X* +hobé + 1419524 210y +115¢



2-Descent: Example £/
&
\37'= X>- 105196 X ~12970320

% Ses

A
y = -9xtz00x 232

4= 239K o02ax" 15 Sewn
‘32 x44300x 42312
(0,7)e S¢,,
A 4 []
= Uyt o22hey +289
g (W?)@C:Sg,s

g% 289 X* +hobé + 1419524 210y +115¢



2-Descent: Example £ /®

\3‘: X>- 105196 X ~12970320

(-202,192)
o)
N

S—l?o,o) (37A4, . y\ Se s

A
y = -9xtz00x 232

’

(015’4') € SE.| /‘

4B 299K oz vt [
/

(0,7)e S¢,,

A 4 []
= Uyt o22hey +289
g (W?J‘I-)G.Sg,s

g% 289 X* +hobé + 1419524 210y +115¢

SEH

‘32 Ix30ex 12312




2-Descent: Example £ /®

\3": X2= 105196 X —12370320 ]‘f’)
Crog0)  (anee) (700
I
i ),/W +300x*- 2312

' _UJ_(E/@‘) 2
0/3‘})@.§g,5 ( O

(0[5"‘) € SE|| "
4B 299K oz vt [
‘9 S x“+‘socv14u|z
37; Uyt o224 py" 4285 ( \ o
g‘: 289 X* +hobé + 1419524 210y +115¢


Alvaro Lozano-Robledo



Alvaro Lozano-Robledo



Alvaro Lozano-Robledo



Alvaro Lozano-Robledo



Alvaro Lozano-Robledo



Alvaro Lozano-Robledo



Alvaro Lozano-Robledo



Alvaro Lozano-Robledo



Alvaro Lozano-Robledo



Alvaro Lozano-Robledo



Alvaro Lozano-Robledo



Alvaro Lozano-Robledo



Alvaro Lozano-Robledo



Alvaro Lozano-Robledo




2-Descent: Example £ /®

\3‘: X>- 105196 X ~12970320

(-202,192)
o)
N

| % Ses

(—‘70 ! O) (3?"’:
-
. y": -9x*i300x - 2312

A
d
‘ /
.
.
‘
’
. i
k4 i
’
1

|

€
(015’4') € SE,| ". G/ “LLL(E/@\) [Z]
y*= 299K s10zmx wise Sewn
/ ‘92 Fx41200x %1312
(O,/?)e SE;?.
. ll-x"-zz'ﬂx" +2.85
(0134)€§g,s

Sel.( E/@)x .
(#2027 (%) g

ToRS/Ien Mw RANK <HA

22 2.9 X +hot + 429%2 910y +115¢



The BIG Picture (the LMFDB universe)
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THANK YOU

“If by chance | have omitted anything
more or less proper or necessary,
| beg forgiveness,
since there is no one who is without fault
and circumspect in all matters.”

Leonardo “Bigollo” Pisano, Liber Abaci.



