


Lecture 1

What is an elliptic curve?



“It is possible to write endlessly on elliptic curves. (This is not a threat.)”
– Serge Lang, from Elliptic Curves: Diophantine Analysis







What is an elliptic curve?

Given a polynomial equation

f (x1, x2, . . . , xr ) = 0

with integer coefficients (i.e., a
diophantine equation), we can ask
three basic questions:

1 Can we determine if there are
rational or integral solutions?

2 In the affirmative case, can we
find such a solution?

3 Can we describe all such
solutions?

4 (Hilbert’s Tenth Problem over
Z) Is there a Turing machine to
decide if f = 0 has solutions in
Z? (Davis, Matiyasevich,
Putnam, Robinson: No)
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Examples of diophantine equations and rational points:
3x + 5y = 1, a line on the plane

(−3,2) is a point on the line.

x2 + y2 = z2, pythagorean triples

(3,4,5) is a pythagorean triple.

x3 + y3 + z3 = 42, expressions of 42 as the sum of three cubes

(−80538738812075974)3+804357581458175153+126021232973356313

is an expression recently found by A. Booker and D. Sutherland.

Y 4 + 5X 4 − 6X 2Y 2 + 6X 3Z + 26X 2YZ + 10XY 2Z − 10Y 3Z −
32X 2Z 2 − 40XYZ 2 + 24Y 2Z 2 + 32XZ 3 − 16YZ 3 = 0,
the cursed curve (the modular curve Xs(13)).

(1,1,2) is a (CM) point on the cursed curve.
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A gift from Martin Davis, the diophantine equation

9(x2 + 7y2)2 − 7(u2 + 7v2)2 = 2.



What diophantine equations can we solve?

Polynomials in one variable, f (x) = 0, with integer coefficients:

f (x) = anxn + an−1xn−1 + · · ·+ a1x + a0 = 0.

Divisibility theory: if x0 = m
n is a root, then m | a0 and n | an.

Polynomials in two variables, degree 1:

L : ax + by = c.

Theory of greatest common divisors: there is an integral point on
L if and only if gcd(a,b) | c.

Polynomials in two variables, degree 2:

C : ax2 + by2 + cxy + dx + ey + f = 0.

Hasse–Minkowski (local-to-global) theory determines existence of
one point. Stereographic projection finds the rest.
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A parametrization via stereographic projection of the rational points on
the circle x2 + y2 = R2 of radius R is given by

Qm =

(
− 2Rm
(m2 + 1)

,
R(m2 − 1)
(m2 + 1)

)
.



C : f (x1, x2) = 0

When C is smooth (projectively!), of degree 3 (genus 1), we lack an
algorithm that will determine whether there are any rational points on
C, or, if one exists, an algorithm that will determine all the rational
points on the curve C.

Definition
An elliptic curve E over a field F is a (projective) smooth cubic curve
(genus one), with at least one point defined over F .

Fact: every elliptic curve has a (Weierstrass) model of the form

y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, for some ai ∈ F .

We are interested in determining all F -rational points on E :

E(F ) = {(x0, y0) ∈ E : x0, y0 ∈ F} ∪ {O = [0 : 1 : 0]}.
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Example

Let E/Q be the curve y2 = x3 − x .

Then:

E(Q) = {O, (0,0), (1,0), (−1,0)},

where O = [0 : 1 : 0], in projective coordinates, in the “point at infinity.”
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C : f (x1, x2) = 0

When C is smooth (projectively!), of degree 3 (genus 1), we lack an
algorithm that will determine whether there are any rational points on
C, or, if one exists, an algorithm that will determine all the rational
points on the curve C.

Definition
An elliptic curve E over a field F is a (projective) smooth cubic curve
(genus one), with at least one point defined over F .

Example

Let E/Q be the curve X 3 + Y 3 = 1.

Then, E(Q) is in bijection with
E ′(Q), where E ′ : y2 = x3 − 432 via ψ : E → E ′ given by

ψ((X ,Y )) =

(
12

X + Y
,
36(X − Y )

X + Y

)
, ψ−1((x , y)) =

(
36 + y

6x
,
36 − y

6x

)
.
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Some examples of diophantine equations, or problems that are
connected to elliptic curves:

Fermat’s last theorem was proved via the so-called Frey curve
Y 2 = X (X − An)(X + Bn), where An + Bn = Cn .

The congruent number problem is connected to Y 2 = X 3 − n2X .

The ABC conjecture is logically equivalent to specific upper
bounds on an integral solution (x0, y0) to Mordell’s equation
Y 2 = X 3 + k in terms of the parameter k.

Hilbert’s Tenth Problem over a ring of integers of a number field
F can be shown to be undecidable if a well-known conjecture
(finiteness of Sha) holds for elliptic curves over F .

Elliptic curve cryptography is widely used in internet
applications (e.g., WhatsApp end-to-end encryption).
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The Congruent Number Problem
Let n ≥ 1 be a natural number. Is there a right triangle (a,b, c) with
rational sides a,b, c ∈ Q whose area is precisely n?

Example
The number n = 6 is a congruent number because it is the area of the
right triangle (3,4,5).

Example

The right triangles are parametrized (e2 − f 2,2ef ,e2 + f 2) for
e > f ≥ 1. Hence, n = ef (e2 − f 2) is a congruent number. For
instance, n = 30 is the area of (5,12,13).

The number n = 1 is not the area of a right triangle with rational sides
(proved by Fermat). The number n = 5 is a congruent number, but it is
not the area of a right triangle with integer side lengths.
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In Flos (circa 1225), Leonardo “Bigollo” Pisano

(a.k.a. Fibonacci)
found a right triangle of area n = 5 in response to a challenge by the
Roman Emperor Frederick II:(

3
2
,
20
3
,
41
6

)
.
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The connection between congruent numbers and elliptic curves:

Theorem (Congruent numbers ↔ Points on elliptic curves)
There is a 1-1 correspondence between the sets

{(a,b, c) : a2 + b2 = c2, ab
2 = n} and

{(x , y) : y2 = x3 − n2x , y ̸= 0},
given by

(a,b, c) 7→
(

nb
c − a

,
2n2

c − a

)
, (x , y) 7→

(
x2 − n2

y
,
2nx
y
,
x2 + n2

y

)
.

Example

Fibonacci’s triangle
(3

2 ,
20
3 ,

41
6

)
of area n = 5 maps to the point

P =

(
25
4
,
75
8

)
on the curve y2 = x3 − 25x . (And P maps to Fibonacci’s triangle.)
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Via the previous correspondence, right triangles with area n = 5
correspond to points on y2 = x3 − 25x with non-zero y -coordinate.

Let’s grab some chalk and use the theory of elliptic curves to find
another right triangle of area 5.
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Theorem
There is a 1-1 correspondence between the sets

{(a,b, c) : a2 + b2 = c2, ab
2 = n} and

{(x , y) : y2 = x3 − n2x , y ̸= 0},
given by

(a,b, c) 7→
(

nb
c − a

,
2n2

c − a

)
, (x , y) 7→

(
x2 − n2

y
,
2nx
y
,
x2 + n2

y

)
.

Example

The point P =
(1681

144 ,
62279
1728

)
on the curve y2 = x3 − 25x corresponds to

the triangle (
1519
492

,
4920
1519

,
3344161
747348

)
of area 5.



For a fixed n ≥ 1, the curve y2 = x3 − n2x is an example of an elliptic
curve.

Definition
An elliptic curve E over a field F is a (projective) smooth cubic curve
(genus one), with at least one point defined over F .

We are interested in determining all F -rational points on E :

E(F ) = {(x0, y0) ∈ E : x0, y0 ∈ F} ∪ {O = [0 : 1 : 0]}.

KEY FEATURE OF ELLIPTIC CURVES:
The set of F -rational points E(F ) of an elliptic curve E/F can be
endowed with a group structure, defined geometrically (also
algebraically through groups of divisors).
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Louis Mordell
1888 − 1972

Theorem (Mordell, 1922)
Let E/Q be an elliptic curve. Then, the group of Q-rational points on E,
denoted by E(Q), is a finitely generated abelian group. In particular,
E(Q) ∼= E(Q)tors ⊕ ZRE/Q where E(Q)tors is a finite subgroup, and
RE/Q ≥ 0.



Louis Mordell
1888 − 1972

André Weil
1906 − 1998

Theorem (Mordell–Weil, 1928)
Let F be a number field, and let A/F be an abelian variety. Then, the
group of F-rational points on A, denoted by A(F ), is a finitely
generated abelian group. In particular, A(F ) ∼= A(F )tors ⊕ ZRA/F where
A(F )tors is a finite subgroup, and RA/F ≥ 0.
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The following are some examples of elliptic curves and their
Mordell-Weil groups:

1 The curve E1/Q : y2 = x3 + 6 satisfies E1(Q) = {O}.
2 The curve E2/Q : y2 = x3 + 1 has only 6 rational points:

E2(Q) = {O, (2,±3), (0,±1), (−1,0)} ∼= Z/6Z.

3 The curve E3/Q : y2 = x3 − 2 does not have any rational torsion
points other than O. However, E3(Q) = ⟨(3,5)⟩ ∼= Z.

4 The elliptic curve E4/Q : y2 = x3 + 7105x2 + 1327104x features
both torsion and infinite order points. In fact, E4(Q) ∼= Z/4Z⊕ Z3.
The torsion subgroup is generated by the point of order 4
T = (1152,111744). The free part is generated by

P1 = (−6912,6912),P2 = (−5832,188568),P3 = (−5400,206280).
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E(Q) ∼= E(Q)tors ⊕ ZRE/Q

What torsion subgroups E(Q)tors are possible?

Barry Mazur

Theorem (Levi–Ogg Conjecture; Mazur, 1977)

Let E/Q be an elliptic curve. Then

E(Q)tors ≃

{
Z/MZ with 1 ≤ M ≤ 10 or M = 12, or
Z/2Z⊕ Z/2MZ with 1 ≤ M ≤ 4.

Moreover, each possible group appears infinitely many times.
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The elliptic curve E/Q : y2 + xy + y = x3 + x2

has a point P = (0,0) of order 4.
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The curve E/Q : y2 − y = x3 − x2 has a point P = (0,1) of order 5.
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The elliptic curve E/Q : y2 = x3 + 1 has a point P = (2,3) of order 6.
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The elliptic curve 30030bt1 has a point of order 12.

y2 + xy = x3 − 749461x + 263897441



“Torsion Groups and Galois Representations of Elliptic Curves”
Zagreb (Croatia), June 25-29, 2018.



E(Q) ∼= E(Q)tors ⊕ ZRE/Q

What ranks RE/Q of elliptic curves over Q are possible?

Open Problem
What values can RE/Q take? In particular, can RE/Q be arbitrarily
large, or is it uniformly bounded?
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What ranks RE/Q of elliptic curves over Q are possible?

Open Problem
What values can RE/Q take? In particular, can RE/Q be arbitrarily
large, or is it uniformly bounded?



Example (2006): Elkies’ elliptic curve of rank ≥ 28 (= 28 under GRH!)

y2 + xy + y = x3 − x2 − (2006776241557552658503320820933854
2750930230312178956502)x + (3448161179503055646703298569
0390720374855944359319180361266008296291939448732243429)

Noam Elkies

Independent points of infinite order:

P1 =[−2124150091254381073292137463,
259854492051899599030515511070780628911531]

P2 =[2334509866034701756884754537,
18872004195494469180868316552803627931531]

P3 =[−1671736054062369063879038663,
251709377261144287808506947241319126049131]
...



P4 =[2139130260139156666492982137,
36639509171439729202421459692941297527531]

P5 =[1534706764467120723885477337,
85429585346017694289021032862781072799531]

P6 =[−2731079487875677033341575063,
262521815484332191641284072623902143387531]

P7 =[2775726266844571649705458537,
12845755474014060248869487699082640369931]

P8 =[1494385729327188957541833817,
88486605527733405986116494514049233411451]

P9 =[1868438228620887358509065257,
59237403214437708712725140393059358589131]

P10 =[2008945108825743774866542537,
47690677880125552882151750781541424711531]

P11 =[2348360540918025169651632937,
17492930006200557857340332476448804363531]





Open Problem
Can the rank RE/Q of an elliptic curve be arbitrarily large?

Conjectures and heuristic arguments for and against:

Néron (1950), Honda (1960): Yes (bounded).

Cassels (1966), Tate (1974), Mestre (1982), Silverman (1986,
2009), Brumer (1992), Ulmer (2002), Farmer–Gonek–Hughes
(2007): No (unbounded).

Rubin–Silverberg (2000), Granville (2006), Watkins (2015),
Park–Poonen–Voight–Wood (2016): Yes (bounded).



Jennifer Park, Bjorn Poonen, Melanie Matchett Wood, John Voight.

Conjecture (Park, Poonen, Voight, Wood)
The ranks RE/Q are bounded, and there are only finitely many rank
values above 21.



Goal
Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) ∼= E(Q)tors ⊕ ZRE/Q

Donald Anderson, first poster child.

The torsion subgroups over Q
are the “poster child” of what an
arithmetic group should be like.
Torsion subgroups are:

Computable
Classified
Parametrized in families
Statistically understood
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curve E/Q.
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The curve E : y2 + xy + y = x3 + x2 − 4x + 5 (42.a5)
has torsion subgroup ⟨(−1, 3)⟩ ∼= Z/8Z.

Computable
▶ Nagell–Lutz theorem.
▶ Division polynomials.



Goal

Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) ∼= E(Q)tors ⊕ ZRE/Q

-2 2 4 6

-15

-10

-5

5

10

The curve E : y2 + xy + y = x3 + x2 − 4x + 5 (42.a5)
has torsion subgroup ⟨(−1, 3)⟩ ∼= Z/8Z.

Classified
▶ Mazur’s theorem:

E(Q)tors ≃

{
Z/MZ, or
Z/2Z⊕ Z/2NZ

where 1 ≤ M ≤ 10 or M = 12,
and 1 ≤ N ≤ 4.
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The curve E : y2 + xy + y = x3 + x2 − 4x + 5 (42.a5)
has torsion subgroup ⟨(−1, 3)⟩ ∼= Z/8Z.

Parametrized in families
▶ Kubert et al.:

e.g.,
elliptic curves with Z/8Z tors.:

E : y2+(1−a)xy−by2 = x3−bx2

with b = (2t − 1)(t − 1) and
a = b/t , for any t ̸= 0,1/2,1.
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The curve E′ : y2 + 1
3 xy − 2

9 y = x3 − 2
9 x2 (∼=Q 42.a5)

has torsion subgroup ⟨(−1, 3)⟩ ∼= Z/8Z.

Parametrized in families
▶ Kubert et al.:

e.g.,
elliptic curves with Z/8Z tors.:
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The curve E : y2 + xy + y = x3 + x2 − 4x + 5 (42.a5)
has torsion subgroup ⟨(−1, 3)⟩ ∼= Z/8Z.

Statistically understood
▶ Harron–Snowden (2013):

Let NG(X ) be the number of
elliptic curves E/Q with (naive)
height ≤ X and E(Q)tors ∼= G.
Then, there are positive
constants C1,C2,d(G) such
that

C1X d(G) ≤ NG(X ) ≤ C2X d(G).

E.g., d({0}) = 5/6 and
d(Z/8Z) = 1/12.



Goal
Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) ∼= E(Q)tors ⊕ ZRE/Q

The curve E : y2 = x3 − 4x + 4 (88.a1) has trivial torsion
subgroup and rank 1, with E(Q) = ⟨(2,−2)⟩ ∼= Z.

How about the rank?
· Computable?
· Classified?
· Parametrized in families?
· Statistically understood?
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Our goal is to understand the possible structures of E(Q), for an elliptic
curve E/Q.

E(Q) ∼= E(Q)tors ⊕ ZRE/Q

The curve E : y2 = x3 − 4x + 4 (88.a1) has trivial torsion
subgroup and rank 1, with E(Q) = ⟨(2,−2)⟩ ∼= Z.

How about the rank?
· Computable? Maybe
· Classified? No
· Parametrized in families? No
· Statistically understood? No



Is the Rank Computable?

Analytically? Yes∗, if we assume B–S-D, the rank is the order of
vanishing of the Hasse–Weil L-function L(E , s) at s = 1.
(∗Computing values requires ≈

√
NE Fourier coefficients, and issues certifying zeroes numerically.)

The Birch and Swinnerton-Dyer conjecture is wide open, with only
some special cases (rank ≤ 1) known to be true.
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Is the Rank Computable?
Analytically? Yes∗, if we assume B–S-D, the rank is the order of
vanishing of the Hasse–Weil L-function L(E , s) at s = 1.
(∗Computing values requires ≈

√
NE Fourier coefficients, and issues certifying zeroes numerically.)

The Birch and Swinnerton-Dyer conjecture is wide open, with a one
million dollar reward attached to it (it is one of the Millenium Problems
proposed by the Clay Math Institute).



Is the Rank Computable?

Analytically? Yes∗, if we assume B–S-D, the rank is the order of
vanishing of the Hasse–Weil L-function L(E , s) at s = 1.
(∗Computing values requires ≈

√
NE Fourier coefficients, and issues certifying zeroes numerically.)

Algebraically? Yes∗, if we assume X(E/Q)[p∞] is finite, for
some prime p, then the method of p-descent determines E(Q).
(∗Computing the rank may involve computing models for high p-descendants.)

The method of descent is based on the following exact sequence:

0 −→ E(Q)/pnE(Q) −→ Selpn(E/Q) −→ X(E/Q)[pn] −→ 0,

where Selpn(E/Q) is a finite, computable, cohomological group
defined by finitely many local conditions.
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The BIG Picture (the LMFDB universe)



THANK YOU

“If by chance I have omitted anything
more or less proper or necessary,

I beg forgiveness,
since there is no one who is without fault

and circumspect in all matters.”

Leonardo “Bigollo” Pisano, Liber Abaci.


