Using Quadratic Reciprocity

Lecture 4

Correction: when \(p \equiv 1 \mod 4 \), \(\left(\frac{a}{p} \right) = 1 \), and solve \(x^2 \equiv a \mod p \) by Tonelli-Shanks, it need not happen that half the \(b \)'s with \(\left(\frac{b}{p} \right) = -1 \) lead to one solution and half to the other.

Example: \(x^2 \equiv 3 \mod 13 \) has \(x_1 = 9 \) and \(y_1 = 1 \), so Tonelli-Shanks terminates before we use \(b \) (well, c).

What can be said about \(\left(\frac{a}{p} \right) \) as \(p \) varies and \(a \in \mathbb{Z} \) is fixed (\(a \neq 0 \))?

1. \(a = \Omega \) in \(\mathbb{Z} \) \(\Rightarrow \ \left(\frac{a}{p} \right) = 1 \) if \(p \nmid 2a \)
2. \(a + \Omega \) in \(\mathbb{Z} \) \(\Rightarrow \ \left(\frac{a}{p} \right) = 1 \) for infinitely many \(p \)

Thm: If \(f(x) \in \mathbb{Z}[x] \) is not constant, then \(f(a) \equiv 0 \mod p \) has a root for infinitely many \(p \). See MSE 109538. Apply this to \(f(x) = x^2 - a \).
3. \(a \neq 0 \text{ in } \mathbb{Z} \Rightarrow (\frac{a}{p}) = -1 \) for infinitely many \(p\).

See Ireland/Rosen p. 57 (2nd ed.)

Proof can be made simpler using Jacobi symbols.

Rk: Using QR + Dirichlet's theorem, one can show the sets of primes

\[\exists p: (\frac{a}{p}) = 1 \text{ and } \exists p: (\frac{a}{p}) = -1 \]

both have density \(\frac{1}{2}\).

Let's apply this result to division rings, which are "possibly noncommutative fields."

Ex: Hamilton's quaternions

\[H = \mathbb{R} + \mathbb{R}i + \mathbb{R}j + \mathbb{R}k, \]

with \(i^2 = j^2 = k^2 = -1\), \(ij = -ji = k\).

For \(q = a + bi + cj + dk\), set

\[\overline{q} = a - bi - cj - dk \text{ and } N(q) = q\overline{q} = a^2 + b^2 + c^2 + d^2 > 0 \text{ if } q \neq 0. \]

So \(q\) has mult. inverse \(\frac{1}{N(q)}\) \(\overline{q}\).
The center of H is R and

$$H = R + Ri + Rj + RK = R + Ri + (R + Ri)j = C + Cj,$$

with $j^2 = cij$ for $i \in C$.

Thm (Frobenius) The only fin-dim R-central noncomm division ring is H.

For \mathbb{Q}_p in place of R we have

- finitely many \mathbb{Q}_p-central div. rings of each dimension
- one noncomm 4-dim \mathbb{Q}_p-central div ring (for $p=2$ it's $H(\mathbb{Q}_2)$)

Defn For a field F of characteristic $\neq 2$

- a quaternion algebra over F is a ring $F + Fi + Fj + Fk$

where $i^2 = a \in F^x$, $j^2 = b \in F^x$, $k = ij = -ji$ and $k^2 = -ab \in F^x$.
Denote this by \((a,b)_F\).

\[\text{Ex} \ (2,5)_Q = \alpha + \alpha i + \alpha j + \alpha k \ \text{with} \]
\[i^2 = 2 \quad j^2 = 5, \quad k = ij = -j i \ \text{has} \ \alpha^2 = -10. \]

Note \((2,5)_Q = \alpha + \alpha i + (\alpha + \alpha i)j = \alpha(\sqrt{2}) + \alpha(\sqrt{5})j \]
and \(ja = \overline{a}i \) for \(a \in \mathbb{Q}(\sqrt{5})\).

Properties

1. \((a,b)_F \cong (b,a)_F\).
2. \((1, b)_F \cong M_2(F)\).
3. If \((a, b)_F \not\cong M_2(F)\), then \((a, b)_F\) is a division ring.

Thm For \(a \in \mathbb{Z} - \{0, 1\}\) and odd prime \(p\),

\[(\frac{a}{p}) = -1 \Rightarrow \ (a, p)_Q \ \text{is a division ring}.\]

Ex \((\frac{2}{5}) = -1 \Rightarrow \ (2, 5)_Q \ \text{is a division ring}.\)

Ex \((\frac{3}{11}) = 1, \ (\frac{1}{3}) = (\frac{2}{3}) = -1\), \(\alpha \in \mathbb{Q}(3, \sqrt{3})\), \((3, \sqrt{3})_Q \cong (11, \sqrt{3})_Q\) is a division ring.
Rk: For odd primes $p \neq 3$, $(p, 8) \mathbb{Q}$ is a division ring $\iff (\frac{8}{p}) = -1$ or $(\frac{8}{p}) = -1$

Thm: For $a \in \mathbb{Z}$ and distinct odd primes p and q,

$$(\frac{a}{p}) = -1 \text{ and } (\frac{a}{q}) = -1 \implies (a, p) \mathbb{Q} \text{ and } (a, q) \mathbb{Q} \text{ are nonisomorphic algebras.}$$

Ex Inf. many primes p are 3 mod 4 so all division rings $(-1, p) \mathbb{Q}$ for such p are nonisomorphic.

For all $a \in \mathbb{Z}$, $a \neq 0$ in \mathbb{Z}, there are inf. many odd primes p s.t. $(\frac{a}{p}) = -1$, so we get inf many nonisomorphic div rings

$$(a, p) \mathbb{Q} = \mathbb{Q}(\sqrt{a}) + \mathbb{Q}(\sqrt{a}) j \text{ with } j^2 = p$$

and $j a = x j \forall x \in \mathbb{Q}(\sqrt{a})$
Last time: if \(\mathbb{Z}[(\sqrt{d})] \) is UFD and \(p \) is prime, then

\[
\pm p = x^2 - dy^2 \quad \text{in } \mathbb{Z}
\]

can remove minus sign if \(p = 2 \) or \(p \equiv 1 \text{ mod } 4 \).

Replace \(\mathbb{Z} \) with \(\mathbb{Z}[i] \), where units are \(\{1, -1, i, -i\} \) and the primes are \(1 + i \) and "odd" primes:

the primes with odd norm like \(1 + 2i, 1 - 2i, 3, 7, -11, 4 - i, \ldots \) up to unit multiple.

The only prime in \(\mathbb{Z}[i] \) dividing \(2 \) is \(1 + i \):

\[
2 = (1+i)(1-i) = (1+i)(1+i)(-i) = (-i)(1+i)^2
\]

For \(\pi = \text{odd prime in } \mathbb{Z}[i] \) and \(\alpha, \beta \in \mathbb{Z}[i] \), set

\[
\left(\frac{\alpha}{\pi} \right) = \begin{cases}
1 & \text{if } \alpha \equiv \beta \mod \pi, \pi \nmid \alpha \\
-1 & \text{if } \alpha \equiv -\beta \mod \pi \\
0 & \text{if } \alpha \equiv 0 \mod \pi
\end{cases}
\]

Then \(\alpha \equiv \beta \mod \pi \Rightarrow \left(\frac{\alpha}{\pi} \right) = \left(\frac{\beta}{\pi} \right) \). Since

\[
| \mathbb{Z}[i]/\pi | = N(\pi), \quad \text{we get } \left(\frac{\alpha}{\pi} \right) \equiv \alpha^{N(\pi) - 1} \mod \pi \]

and \(\left(\frac{\alpha \beta}{\pi} \right) = \left(\frac{\alpha}{\pi} \right) \left(\frac{\beta}{\pi} \right) \) for all \(\alpha, \beta \in \mathbb{Z}[i] \).
Calculating \(\left(\frac{d}{n} \right) \) is thus reduced to a main law for \(\left(\frac{d}{p} \right) \) for odd primes \(p, p' \) that are not unit multiples and supplementary laws for \(\left(\frac{d}{p} \right), \left(\frac{d}{p'} \right) \).

Main law: \(\left(\frac{d}{p} \right) = (-1)^{T(p, p')} \left(\frac{d}{p'} \right) \)

where \(T(p, p') \in \mathbb{Z}/4 \) is determined by \(p, p' \mod 4 \), \(\left(\frac{d}{p} \right) \) is determined by \(p \mod 4 \) and \(\left(\frac{d}{p'} \right) \) is determined by \(p' \mod 4 \). Details are in notes.

Thm: If \(8c \in \mathbb{Z}[i] \) is not a square and \(\mathbb{Z}[i][\sqrt{8}] \) is UFD then for primes \(p \) in \(\mathbb{Z}[i] \),

\[d \equiv 0 \mod p \iff u = x + Sy^2 \text{ in } \mathbb{Z}[i] \text{ for some unit } u \text{ and we can avoid } u \text{-factor if } \]

\[i = x^2 - Sy^2 \text{ in } \mathbb{Z}[i] \]
Ex: \(x^2 - (1+i)y^2 = \pi\)

Fact: \(\mathbb{Z}[i][\sqrt{1+i}] = \mathbb{Z}[\sqrt{1+i}]\) is UFD and
\[i = x^2 - (1+i)y^2 \quad \text{for} \quad x=i, y=i.\]
Thus
\[1+i \equiv 0 \pmod{\pi} \iff \pi = x^2 - (1+i)y^2 \quad \text{in} \quad \mathbb{Z}[i] \]

Try \(\pi = 2+i\):

\[1+i \equiv 4 \pmod{2+i}, \quad \text{so we must be able to solve} \]
\[x^2 - (1+i)y^2 = 2+i \quad \text{in} \quad \mathbb{Z}[i]: \ x = 3, \ y = 2-i.\]

Try \(\pi = 2-5i\)

\[1+i \equiv 100 \pmod{2-5i}, \quad \text{so we must have a soln to} \]
\[x^2 - (1+i)y^2 = 2-5i \quad \text{in} \quad \mathbb{Z}[i]: \ x = 2-i, \ y = 1.\]